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This thesis conducts an in-depth study of the computational issues associated with solving
.4

a set of coupled discrete-time Riccati equations. Briefly, the organization of this study is as fol-

lows. First. the problem is motivated by discussing two game situations which give rise to cou-

pled discrete-time Riccati equations. Next. the computational aspects of solving these coupled

equations are investigated. Finally, algorithms and software are produced that iterate these

equations in a numerically robust and computationally efficient manner. The thesis carries the

coupled Riccati problem from formulation to software implementation with several theoretical

advances along the way. However, the major contribution of this work is the Riccati solution

method - i.e.. the algorithms and software which solve the problem. As the algorithms are for-

mulated. structured, and subsequently coded, the software engineering factors that influence

good software design are addressed. Furthermore. the coupled Riccati software developed here

-is integrated into a well-known Computer-Aided Design (CAD) software package. Thus, the

informal computer user has easy access to software which solves both single and coupled Ric-

cati equations.
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CHAPTER 1

INTRODUCTION

This thesis conducts an in-depth study of the computational issues associated with solving a

set of coupled discrete-time Riccati equations. Briefly, the organization of this study is as follows.

First, the problem is motivated by discussing two game situations which give rise to coupled

discrete-time Riccati equations. Next, the computational aspects of solving these coupled equations

are investigated. Finally, algorithms and software are produced that iterate these equations in a

numerically robust and computationally efficient manner. The thesis carries the coupled Riccati

problem from formulation to software implementation with several theoretical advances along the

way. However, the major contribution of this work is the Riccati solution method - i.e.. the
Vj.

algorithms and software which solve the problem. As the algorithms are formulated. structured.

and subsequently coded. the software engineering factors that influence good software design are

addressed. Furthermore. the coupled Riccati software developed here is integrated into a well-

known Computer-Aided Design (CAD) software package. Thus, the informal computer user has

easy access to software which solves both single and coupled Riccati equations.

1.1 Motivation

This section motivates the computational study of coupled discrete-time Riccati equations.

Historical background is presented to give the proper setting. A short discussion of the scope of the

thesis contribution follows to provide some breadth to the findings. But the set of computational

"- issues is the key focus of this work and the software design and implementation are of

fundamental concern. Hence, the Computer-Aided Control System Design (CACSD) field is

introduced. Then. the L-A-S CACSD language is reviewed.

U.:
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1.1.1 Background

The theory of optimal control has reached a significant level of maturity as evidenced by the

number of textbooks written on the subject [e.g.. 1.2.3]. A classic problem often discussed in

introductory courses is the Linear Quadratic (LQ) regulator using state feedback. Here, one finds

that the optimal control is obtained by solving a single Riccati equation. Originally, the solution to

the dual (filtering) problem was given by Kalman [4]. Subsequently. both continuous-time [1.2.3]

and discrete-time [5.61 versions of the Riccati equation have been studied in detail. A key feature

of optimal control problems is that there is a single control agent or Decision Maker (DM).

4 A more interesting situation occurs when there are two or more DMs controlling the

* underlying dynamic system. A straightforward generalization of the state-feedback regulator

problem to multiple DMs. each with its own LQ objective functional. leads to the feedback Nash

equilibrium concept [7]. Here, one finds that the feedback Nash equilibrium solution. if it exists, is

obtained by solving a set of coupled Riccati equations. However, the numerical solution of these

coupled Riccati equations is substantially more difficult to characterize. Furthermore. conditions

* insuring existence and uniqueness of fixed points of these coupled equations have not been

produced. Nevertheless, several results concerning the general LQ continuous-time problem have

4 appeared [7-12]. By contrast, the discrete-time case has received considerably less attention.

Indeed, most of the results on discrete-time feedback Nash solutions may be found in [71 or [13].

But these authors point out the need for research into the computational aspects of solving these

game problems.

In this thesis, we solve for the so-called linear, state-feedback (perfect-state information)

Nash equilibrium of a discrete-time descriptor system. For simplicity only the two DM case is

considered. The generalization to three or more D~ls remains an open problem. The material

* presented here suggests an obvious approach towards extending the theory. The main contribution
u.-

of this work, however, is the development of algorithms and software suitable for solving coupled

discrete-time Riccati equations arising from LQ feedback Nash games. Additionally, solutions to
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large-scale problems and single-player (control) problems follow immediately from the

descriptor-variable formulation taken here. The convergence behavior of these equations is

investigated which results in a contraction mapping argument guaranteeing existence and

uniqueness of a solution to the infinite-horizon Nash game problem. Also. a new type of game

9" theory called nudtirates is discovered via asymptotic analysis. The tools of asymptotic analysis are

also used in producing the contraction mapping result. The descriptor-variable game formulation

as well as multirate game theory have not been examined until now. These theoretical

contributions enable studies of a significantly larger class of LQ Nash game problems. Moreover.

there are several practical situations where this new theory yields more accurate and/or

-' numerically appealing models.

Although theory is an integral part of this work. the end product is softvare. Hence.

software engineering is a key issue. That is. the design and implementation of the Riccati software

ought to comply with the standards a, ' practices currently used for software development. This

approach ultimately assures the quality of the final package. However, before embarking on a

detailed discussion of the algorithms and the software structure, it is necessary to expand on this

last idea more fully.

"- 1.1.2 Computer-Aided Control System Design

A study such as this falls under the heading of Computer-Aided Control System Design

(CACSD). Essentially, this research field strives to provide the control system and related

communities with high-quality, reliable, numerically robust algorithms and software. CACSD is

still a relatively young area of research (about 5 years old). This remark is supported by the

observation that formal conferences on CACSD are relatively new [e.g., 14-16]. There are several

problems. such as linear least squares or generalized eigenvalues-eigenvectors, that provide a basis

i for solving more complicated control, system, and estimation problems. It is extremely important

that stable numerical methods are used for solving these simple problems. Then solutions to more
.,
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complicated problems rest on a firm algorithmic foundation. Some tools of modern numerical

analysis which are finding significant utility in CACSD include orthogonal transformations [17),

Householder transformations [17). Singular Value Decomposition (SVD) [17.18], invariant

imbedding techniques [19]. and descriptor variable formulations [19.20]. Some of these tools are

useful for obtaining matrix forms with special structure (e.g.. block triangular, Hessenberg. real

Schur form) while others circumvent difficulties encountered in poorly or ill-conditioned problems.

As a consequence of the CACSD approach, one can arrive at the solution to a problem in a

straightforward and computationally efficient manner by exploiting the structure imposed by a

particular technique. A recent and comprehensive survey of the preceding ideas may be found in

[211.

With regards to robust numerical software, it is widely recognized [e.g.. 21] that the

EISPACK [22.23] and LINPACK [24] software packages are well-suited for generalized eigenvalue-

eigenvector problems and linear equation problems. respectively. Both packages are coded in the P
FORTRAN [25] programming language. Furthermore, each package has demonstrated numerical

superiority over the years. Hence. this software is a natural starting point for building the coupled ..-

* Riccati equation algorithms. Sometimes a CACSD package consists of a collection of subroutines.

often using EISPACK and/or LINPACK as the lowest level routines. RICPACK [261, a software

package for single algebraic Riccati equations, is an example of a CACSD package with this

structure. Other times a more substantial undertaking yields a package capable of solving a broad

range of problems.

Despite the current evolutionary state of affairs, several trends are apparent. For instance.

the large CACSD software packages emerging todav may be classified according to the following -

groups: menu-driven, command-driven, expert systems. and languages. Although these categories

are distinct, examples of packages can be found that possess elements of more than one group.

Because of the volatilit\ of CACSD packages. specific examples of each type are difficult to produce

without dating this text. Nevertheless. a good overvie, of sot tware packages available today may

U



•~~~~~~~~ '::. ''?'; "r. 3 - - ".:- q -. -.i T '"- ,-t-, ... - .,

5

be found in [27]. In particular, we mention that SIMNON [28] is representative of a command-

driven package whereas L-A-S [27. pp. 243-261] qualifies as a CACSD language.

Each CACSD software group has its strengths and weaknesses in terms of time invested by

the user. For example, menu-driven packages have the advantage that the infrequent user will

probably spend a minimal amount of time (re)learning how to interact with the package by virtue

of the menu-driven environment. However, the disadvantages include the fact that working

through pages of menus is ultimately time-consuming. More importantly. if a solution procedure

does not exist as one of the choices on the menus, then the problem is quite likely unsolvable by the

- given package. On the other extreme, CACSD languages typically require much more time (e.g..

hours) to (re)gain familiarity with the package. But. once mastered, an almost limitless class of

problems may be studied depending on the richness of the language.

Motivated by the desire to conduct systematic numerical studies of LQ Nash games in

- discrete-time as well as the need to efficiently manipulate matrices in a user-friendly environment.

the decision is made to integrate the coupled Riccati software into the L-A-S language [27. pp.

" 243-261). In order to explain the subtleties of the software implementation. a brief review of the

L-A-S language package is required.

1.1.3 The L-A-S Language

BASIC. FORTRAN. and PASCAL are standard programming languages. Each possesses

qualities and attributes that are characteristic of almost any ordinary programming language in use

today (e.g.. subroutine capabilities). It is desirable that a CACSD language parallels the

organizational model set by these familiar and well-established computer languages. Furthermore.

for control and linear s'stem problems a sophisticated matrix environment is mandatory. In',

addition. frequency domain techniques require the analysis and manipulation of matrices of

polynomials. It is according to these prerequisites that the 1.-A-S language was created.

S=
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L-A-S stands for Linear Algebra and Systems. Furthermore, L-A-S is a CACSD language in

the strict sense of the word. That is, L-A-S conforms to standard computer science definitions for

the syntactical specification of a programming language [see. 27. pp. 243-261. and 29]. In addition.

L-A-S has been tested by industry and academia for over a decade at over a dozen locations around

the world. Numerically speaking. L-A-S is based upon the EISPACK [23] and LINPACK [241 .r

software. Also, the NCAR [30] graphics package is employed to provide 2D and 3D plotting

capabilities. In summary, there is ample evidence [27.29.31-36] available to support the claim that

L-A-S is a bona fide CACSD language.

In the normal interactive mode. the user types statements directly in the L-A-S language

interpreter. Each statement is either a command to the interpreter (e.g.. put L-A-S into program

debug mode) or a request to perform some kind of calculation. The former instructs L-A-S to

display or modify various status information concerning the current L-A-S work session. The

latter invokes the L-A-S language parser which subsequently calls upon the FORTRAN subroutines

needed to process the desired computation.

The fundamental concept behind any L-A-S statement is the L-A-S operator. Essentially.

operators combine input data, perform some desired calculation, and generate output data. The

utility of L-A-S operators as algorithmic "building blocks" has been established [27.35.36]. Thus.

even though a single operator may not be available to solve a particular problem, it is quite likely

that the desired result can be obtained by concatenating several "lower-level" operators. The L-A-S

operators are divided into five groups: Input/Output, Data Handling, Linear Algebra. Control

Systems, and L-A-S Program Control. Presently, there are more than 100 L-A-S operators. Also.

the user may define up to 100 matrices with the total number of matrix elements not exceeding -

50.000. The maximum order of any particular matrix is not explicitly limited.

L-A-S programs are written by combining one or more operator statements. Should questions

arise, an extensive on-line help facility containing detailed information about L-A-S language usage .

is at the disposal of the user. In totality, L-A-S and its supporting software consist of over 20.000

21
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lines of FORTRAN code (1977 Standard).

The L-A-S language will be used extensively throughout this dissertation. Therefore, it is

assumed that the reader is adequately familiar with L-A-S so that the L-A-S programs presented

here are easily understood.

1.2 Thesis Problem and Contribution

This section discusses the actual computational problem studied in this thesis and the specifics

of the contribution of this work. Because the coupled discrete-time Riccati equations analyzed here

are deeply rooted in Nash game theory, two game scenarios which lead to the solution of coupled

discrete-time Riccati equations are developed. First, an exposition on descriptor-variable Nash

games is presented. Then. multirate descriptor Nash games are introduced. The mathematical rigor

'* associated with each problem is deferred until Chapter 2. The purpose of this discussion is to

elucidate the theoretical novelty as well as the practical applicability of descriptor games. In

particular. multirate games are extremely useful for formulating optimization problems involving
4,

S". digital communication channels operating at different rates.

Next. the details of the thesis contribution are highlighted. The computational obstacles

pertaining to iterating two coupled discrete-time Riccati equations are delineated. The procedure

by which they are overcome is outlined and justified. Relevant theoretical issues (such as

convergence in the limit as the number of iterations tends toward infinity) and numerical issues

(such as preserving symmetry) are addressed. Finally. the software implementation is described.

v Since the Riccati software is integrated into the L-A-S language. additional care must be taken to

insure that the top-level Riccati routines conform to the L-A-S interfacing protocol. Also. the

low-level routines must be engineered properly. Hence, structured programming and modularity

concepts are discussed.

i
ft
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1.2.1 Introuction

InI
In this subsection. we describe two distinct, yet related problems where coupled discrete-time

Riccati equations arise. Both problem formulations represent new contributions to the theory of

Nash games utilizing perfect state information. However the fact that both problems lead to the

solution of two coupled Riccati equations is the main reason for their inclusion in this thesis. The

ensuing discussion is primarily qualitative.

1.2. 1.1 Descriptor Games

A linear shift-invariant (LSI) discrete-time, descriptor system takes the form:

E x(k+l) = A x(k) + Blul(k) + B 2 u 2 (k) (k 0, Ex(O)EXo) (1.2.1)

y 1 (k) = CIx(k) (1.2.2a)
J p,

y 2(k) C xk) (1.2.2b)

* This game problem has two decision makers, DM1 and DM2. The discrete-time dynamic

system is evolving at a rate indexed by the integer-valued variable. k. x (k) E RR . u 1(k) E RP, .

u,(k) E RP2 . yl(k) E R" n. and y 2(k) E R"2. The matrix E is square and is assumed to be

* nonsingular to numerical precision. The standard state-space formulation is recovered by

multiplying (1.2.1) by E - 1. The system being described is depicted in Figure 1.

Actually. the reasons for choosing a descriptor-variable system are more compelling than is

first apparent. To begin with. many physical systems undergo a modelling phase. during which

' time the physical laws of nature are applied to the problem. Often, the result of this process is a

static and/or dynamic (i.e.. algebraic and/or difference equations) descriptor-variable description of

the system plant. The matrix E plays the role of a mass matrix (when Newton's F = MA is

.* applied), or a sparse interconnection matrix (for distributed parameter systems), or a very singular

matrix (for economic dynamic games). Whatever the case. it is not desirable, or even feasible, to go

to the standard state-space description by inverting E. Second. the theoretical aspects of U

descriptor-variable systems are a relevant issue. Allowing E to be singular ultimately enlarges the

2' 4 . ,.,. - ~ ~ ~ .,-. . - -.... .- .. , - *-....'..%.-.. ,
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Y IN) E x (k+0) A x k) + B u 1 (k) + B2  2 k

U 2 (k)

Figure 1. Two-Player. Discrete-Time, Descriptor Game.

class of problems that can be studied by game theorists. Last but not least. the descriptor-variable

formulation is numerically superior to state-space ones for two reasons. Inverting E may be

numerically impossible or inversion of E would destroy any inherent structure (e.g.. sparsity) in

that matrix. These facts and more support the philosophy that descriptor-variable formulations of

optimal-control and dynamic-game problems are physically. theoretically. and numerically

superior to state-space formulations.

Each DM has an associated LQ cost functional which is to be minimized. We solve for the

linear, state-feedback (perfect-state information) Nash equilibrium solution which. by definition..4

% obeys the principle of optimality. This involves extending the well-known single-player

optimization result to descriptor games. This, in turn, leads to the solution of two coup led

discrete-time Riccati equations.
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1.2.1.2 Multirate Dlescriptor Gaznu

This subsection introduces the theory of multirate descriptor games. The idea is that one DM

is constrained to control the system at a rate which is slower than the other DM. It turns out that

multirate descriptor games can be formulated and solved via single-rate descriptor game theory if

appropriate limiting arguments are constructed. In addition, there are several practical situations

where the optimization problem is more accurately modelled by multirates than by single rates.

Singular perturbation techniques are used successfully to exploit the presence of time scales

within continuous-time [37] and discrete-time systems [38]. These applications deal with time

scales that are inherent in the underlying system plant (i.e.. the system's eigenvalues). By contrast.

relatively little attention has been paid to the case where time scales are introduced by the control.

* Consider such a case in a multiple-decision. discrete-time setting where each DM is constrained to

control the system at a different rate. Although an analysis tool has been developed for discrete-

time systems with multirate samplers [6], it is not suitable for multiple-decision. optimization

problems.

Multirate descriptor games begin with the LSI discrete-time. noncooperative game problem of

the last subsection and constrain the DMs to play at different rates. As before. we determine the

feedback (perfect state) Nash solution [7] which leads to the periodic solution of two coupled

discrete-time Riccati equations. Again, we consider only two DMs. However, the results can be

extended to multiple DM situations as well. In addition, we restrict attention to those rates which

are related to all others by a positive integer constant. It is straightforward to generalize to rates

which are related by rational constants. The fast player (DM1) plays at a rate that is an integral

multiple of the rate of the slow player (DM2). Also. the control policy of the slow player relative

to the fast player is assumed to be all-digital in that the slow player applies zero or no control

during those instants when the fast player is acting on the system alone.

Such situations arise in practice. For example. consider a decentralized control problem where

the controllers must communicate with the system via a digital channel and the maximum
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throughput rate of each channel is different. A second application of multirate descriptor games

occurs in the field of agricultural economics. Here. the suppliers typically act upon the market at a

slow rate (e.g.. annually), whereas the consumers act upon the market at a fast rate (e.g.. daily).
V.

There are other examples of problems that are more accurately modelled with multirates rather

than with single rates. Moreover, there are other interesting features of multirate games that are.

in general, not present in single-rate discrete-time games. For a complete. self-contained treatment

of multirate Nash game theory using a state-space formulation, the reader is referred to [39].

-" 1.2.2 Computational lssue

The numerical aspects of iterating coupled discrete-time Riccati equations are the topic of this

thesis. The computational details are highly nontrivial because of the coupling. This fact is the

, .source of all numerical hardships encountered in this problem. In order to produce any algorithm

for solving these equations. the coupling must be removed.

Initially the relevant equations are gathered together and preliminary notation is defined. A
-w

cross-substitution procedure begins the decoupling process. Eventually the equations are rewritten

in a form that permits iteration. At this point, an algorithm is presented which simultaneously

. iterates the Riccati equations and solves for the feedback matrices needed if the problem is

motivated by a descriptor game. As given, the algorithm is designed to solve single-rate and

multirate descriptor games via dynamic programming. But this fact notwithstanding. the task of

iterating a set of coupled discrete-time Riccati equations is still accomplished. Furthermore. the

conditions which govern the existence of a solution to the iteration problem (i.e.. existence of the

next Riccati iterates) become apparent and are stated formally.

However. it is necessary to study the computational aspects of iterating coupled Riccati

equations in greater detail. Since these equations involve several positive-(semi)definite. symmetric

i matrices and several quadratic forms, it is most wise to seek an expression where these quantities

appear explicitly and often. With this goal in mind. the Riccati equations are rewritten in a form

ki
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more amenable to computer implementation. Then, the specifics of the coupled Riccati algorithm

are investigated. Key matrices (usually positive-(semi)definite and symmetric) are identified and **1

an algorithm for computing each one is presented. The LINPACK software is chosen for the task of

manipulating (i.e.. decomposing, inverting, et cetera) these key matrices while exploiting their

special structure whenever possible. Not surprisingly, a reduction in the amount of computation

results from this method. These low-level algorithms are subsequently used to build the coupled

Riccati package. This structured programming technique yields highly modular and efficient code.

These aspects of the software engineering process make the coupled Riccati software developed here

superior to other approaches.

Finally, existence and convergence issues are addressed. It is natural to ask if the coupled

Riccati iterates converge to a fixed point in the limit as the number of iterations tends toward

infinity. To date. neither necessary nor sufficient conditions insuring such convergence have been

established. This work investigates existence issues associated with finite horizon problems and

convergence issues associated with infinite horizon problems. In particular. a contraction mapping

argument is developed that guarantees existence of and convergence to a unique fixed point for the

infinite horizon coupled Riccati problem.

The main analysis tool used to obtain the convergence results is asymptotic analysis. First. a

small parameter. el. is introduced into one DM's cost functional. As el - 0. the two-player LQ

descriptor Nash game problem reduces to the LQ descriptor regulator problem. Thus. an initial

bridge" between the fields of optimal control and Nash games is established. Furthermore. by

setting el = 0 periodically, a new game called multirates is created. This is the essence of the

limiting argument mentioned in the last subsection. Moreover. there are several practical situations

where multirate game theory is more applicable than standard single-rate game theory.

Next. a second small parameter. e,. is introduced into the other DM's cost functional. Then

we let el - 0 and E2 - 0 independently. Subsequently. we discover that under appropriate

assumptions, there exists a region where the coupled discrete-time Riccati iterations behave as a

....

l [U
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contraction mapping. Therefore. we produce sufficient conditions that guarantee that the Riccati

iterates will converge to a unique fixed point in the limit. Furthermore. empirical simulations have

verified the contraction mapping behavior and indicated that the bounds obtained are rather

conservative.

1.2.3 Software Implementation

The computer algorithms and software developed for solving both single and coupled

discrete-time Riccati equations are integrated into the L-A-S CACSD language as new operators.

- This approach to software implementation is novel and unique. Theory [19,40] and software [26]

have been developed for the numerical solution of single algebraic Riccati equations. Additional

work that is very closely related to this problem includes [41-44]. However, until now similar

efforts for coupled. discrete-time Riccati difference equations have not been undertaken.

Furthermore, descriptor variable theory [19.20.43] is applied to the LQ Nash game formulation

S which leads to the so-called generalized coupled Riccati equations. Thus. the class of problems that

can be solved is broadened.

Each new operator involves careful structuring of the algorithm as well as a sound software

engineering basis for writing the codes. The high-level Riccati routines interface with the L-A-S

" protocol. The low-level routines are highly modular and computationally efficient. In the

computational analysis it is shown that the task of iterating coupled Riccati equations reduces to

- solving systems of linear algebraic equations where one or more matrices have special properties

(like positive-definite and symmetric). Hence, the decision to build the low-level routines from

o-' calls to the LINPACK library is fairly justified. Further. the high-level routines are built from

-* frequent calls to the low-level routines as good structured programming practice dictates. The

overall software structure is depicted in Figure 2.

Altogether. there are a total of six new L-A-S operators. Their mnemonic names are SYST.

I.Q. DRE. GAME. LQNG. and MLTR. Collectively they form a single and coupled discrete-time

C.4
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LA-

Single Riccati SYST oupled RiccatiSigeLQ LQ

L-A-S Operators DRE L-A-S Operators LQNG
MLTR

MLTPLY FEEDBKQDFORM Low Level EYEHAT

PSICOM upport Softwar RICCAT
XTRACT DISRIC

Figure 2. Coupled Riccati Software Structure and Interface with L-A-S

Riccati equation solver subpackage of L-A-S. Descriptor-variable systems are handled directly.

Also. auxiliary codes are required for repeatedly performing small tasks (e.g.. multiplying two

general matrices). The new L-A-S operators plus the associated auxiliary support routines are

written entirely in FORTRAN 77 [251 and amount to approximately 3000 lines of code.

-o
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1.3 This Organiztion

This dissertation is organized in the following manner Chapter 2 formulates two distinct

yet related two-player. LQ dynamic games using descriptor-variable theory. The first has DMs

that control the descriptor system at a single rate while the second restricts one DM to apply

control at a slower rate. Assuming perfect-state information, linear state-feedback Nash strategies

are determined for each case. The solution to both problems requires the iteration of two coupled

discrete-time Riccati equations. The purpose of this chapter is three-fold. First. bas. -epts and

notation are introduced. Second. the coupled Riccati problem is motivated. Third. the theory of

descriptor games and multirate games is formalizea and documented.

Chapter 3 investigates the computational aspects associated with iterating two coupled

discrete-time Riccati equations. A cross-substitution procedure is used to decouple the equations

C A preliminary iteration algorithm is presented in a game context. Then attention is briefly directed

to existence issues (iterability - the ability to iterate a recursive equation) Next. the coupled

Riccati equations are rewritten in a form more amenable to computer implementation Matrices are

identified that possess special structure (e.g.. positive/symmetric) and recur repeatedly throughout
'4

the equations. Algorithms for computing these matrices are given. Next. calculations of thep
feedbacks and the Riccati iterates are described. Then. the multirate Riccati algorithm is presented

The existence of solutions to finite-horizon problems and convergence of Riccati iterates for

infinite-horizon problems are studied in greater depth. Several new results are stated. The

contraction mapping argument is developed here.

Chapter 4 is devoted to the new L-A-S operators created for solving single and coupled Riccati

iterations. Details of the design and syntax of each operator are given. Also, examples illustrate

how the L-A-S language may be used to study single-rate and multirate LQ descriptor Nash games.
".,.

Chapter 5 summarizes this work and discusses future research topics.

Three appendices are included which support the theoretical and numerical results presented

in the main bodv of this thesis. Appendix A contains selected software listings of the low-level

. - , - .,.. ...
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Riccati routines. Appendix B consists of facts and lemmas that are used in proving the contraction

mapping result. Appendix C contains the L-A-S program run which produced the data used in the

contraction mapping example of Subsection 3.4.3.

pp

.
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CHAPTER 2

q PRELIMRNARIES

This chapter formulates and solves two LQ dynamic game problems in discrete time. The

first problem considers a descriptor-variable system where the DMs control the plant at the same

rate. The second problem, a multirate game. further restricts one DM to apply control at a slower

rate. Assuming perfect-state information, linear state-feedback Nash strategies are determined for

each situation. Of more interest, however, is the fact that both problems lead to the solution of

two coupled discrete-time Riccati equations.

Although the descriptor-variable formulation has been applied to the LQ regulator problem

[211. it has not been attempted for dynamic games. Hence, this approach is completely new.

Moreover. multirate descriptor game problems are heretofore posed yet unsolved. As such. this

chapter additionally provides significant extensions to the theory of infinite dynamic games.

However, the primary purpose of the following discussion is to motivate the coupled Riccati

1, problem whose computational aspects are studied in the remainder of this thesis. Second. basic

concepts and notation are defined.

*-" 2.1 LQ Discrete-Time Descriptor Nash Games

Subsection ? 1.1 formulates an LQ descriptor game in discrete time. Subsection 2.1.2 states

the Nash equilibrium solution to the proposed game.

2.1.1 Problem Formulation

Consider the linear shift-invariant discrete-time. descriptor system described by

E x(k+) = .1 x(k) + B uW(k) + B 2 u2 (k) (k 0, E x(0) =E x,,) (2.1.1)

1'.(k) = CIx(k) (2.1.2a)

% v,(k) C, k) . (2.1.2b)

%I
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-This game problem has two decision makers. DM1 and DM2. The discrete-time dynamic

system is evolving at a rate indexed by the integer-valued variable. k. x (k) E R- . u (k) E RP , U

u 2 (k) E RP2. y (k) E R'. and y 2(k) E R'2 The matrix E is square and is assumed to be

., nonsingular to numerical precision. Multiplying (2.1.1) by E - 1 yields the standard state-space.

dynamic game formulation.

Each DM must have an objective, which may or may not agree with the other DM's objective.

Assume that an LQ cost functional has been selected for assessing the payoffs/losses incurred by

each DM. This is frequently done in modern control/game applications. Then. the performance

criterion to be minimized by each DM is given by

J 1 () 1 .) A yr(k+l)S1 (k+l)vl(k+l) + ur(k)RI(k)ul(k) (2.1.3a)

J 1 2(Y51.2) -_ yr(k+l)S 2 (k+l)y 2(k+l) + ur(k)R 2(k) u 2 (k) (2.1.3b)
k-O

where 5,. ,2 denote the mappings from the information set to the control and T denotes

transposition. The time-varying matrices S,(k+l) and R,(k). i=1.2 are symmetric and positive

semidefinite. Equation (2.1.3) describes a finite-time game of duration Tf . If Tf -o 0. then the

infinite-time problem can be studied. Let

U

H 0. 1 .. 2. . T,) (2.1.4)

denote the index set of the horizon of the problem. Also, let N 1 1. 2) be the set used to index the

decision makers. Next. recall the definition of a Nash equilibrium for a two-player game

* Definition 2.1 : Nash Equilibrium [see 7 for details]

*. A set of strategies {. 5) constitutes a Nash equilibrium solution if and only if

Jl =J1(?".5,") < J (, .52")(2.1.5a) ,

j , j,5,..) < J2(Yl. 2) (2.1.5b)

for all I y1. y2l Ef! - the set of all admissible mappings. A star denotes the value of that quantity

at the Nash equilibrium solution.

-* U

.. d--,. '
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In this chapter. we solve for the so-called linear, state-feedback (perfect-state information)

Nash equilibrium [7]. By definition, this solution obeys the principle of optimality. Since each DM

will assume that the other DM will play a linear, state-feedback strategy. the feedlck (perfect-

state) Nash policy of each player in this game is defined by

u l(k) = "' (x (k)) = -F 1 (k) x (k) (2.1.6a)

u 2(k) = y' (x (k)) = -F 2(k) x (k) (2.1.6b)

-- Then,

YI = (v?. . . (2.1.7a)

0 . . (2.1.7b)

We solve the basic LQ game problem described above in the next subsection.

2.1.2 Nash Equilibrium Solution of LQ Discrete-Time Descriptor Gamesi
Define the system matrix of each DM as follows

A 1(k) A A -B-F,(k) and (2.1.8a)

A 2(k) A -BFI(k). (2.1.8b)

-" Then utilizing (2.1.1)-(2.1.2) and (2.1.6) as well as (2.1.8), we can write (2.1.3) as:

-- J1(ynyI) = - x k)A (k)C(kS(k+l)CnAc(kI + F(k)RI(k)F(k) x(k) (2.1.9a)
k=O

.'JY.Y)= x (k) IAIL(k)CL S 2(k+ l )CAcL(k) + Fr(k) R,(k)F 2(k)Ix(k) (2.1.9b)

2" (k) C222k W (..b

where A(L(k)' A 1(k)- BIF 1(k)= A (k) - BF,(k). Here the subscript CL means closed

-- loop.

Because the feedback (perfect state) Nash equilibrium solution obeys the principle of

optimality. this two-player game is equivalent to two coupled one-player LQ regulator problems.

b The following result concer..ig single-player optimization has been extended to descriptor systems.

- It forms the basis for the entire coupled Riccati equation study.

*%
m-



20

Fact 2.1 Optimal LQ Regulator for Discrete-Time Descriptor Systems

The linear state feedback policy yi. i E N defined in (2.1.6) satisfies (2.1.5) subject to (2.1.1)- U

(2.1.3) if and only if

u1 (k) = - (R(k) + Br.K(k+l)Bi)-1 (BrK (k+I)A1 (k)) x'(k) (2.1.10)

where Ki(k) satisfies the following generalized discrete-time Riccati equation:

E r Ki(k) E

= A (k)Ki(k+1)A 1 (k) - (A T (k)Ki(k+)B ) (ri(k))- 1 (B[Ki(k+1)A 1 (k)) + Qi(k) (2.1. 1a)

= Ar(k) IKi(k+l)-Ki(k+l)Bi(ri(k))-XBrKi(k+l) Ai(k) + Qi(k) (2.1.11b)

= ATk W (Ki(k+1))-1 + Bi(Ri(k))-IBT J Ai(k) + Qi(k) (2.1.11c)

and

Q(k)_ CT Si(k+I)Ci. (2.1.12)

r,(k) A R,(k) + BrKi(k+I)Bi (2.1.13)

with terminal constraint

Er K1 (TJ +1)E = QI(T ) = CF S1(T1 +1)C . (2.1.14)

Hence.

F1 (k) = (R I(k) + BjK (k+l)B 1 )-1 (BrK 1 (k+l)A 1(k)) (2.1.15a)
F 2(k) = (R 2(k) + B2K 2(k+I)B 2) 1 (B2K 2(k+1)A 2(k)) (2.1.15b)

Proof : For the case E = I. this result is well known. A proof of this case may be found in [7,

p.221]. The extension to the case of arbitrary (and possibly singular) E has been investigated in

[43.44]. However. it is illustrative to outline the major components of the proof. Let p,(k) denote

the codescriptor vector for the i
th player, i E N. Then each DM faces the following two-point

boundary value problem

E 0 0 x.(k+1) Aii 0 B, x k)
o A'- 0 p (k+l) = Q 1 Er 0 p1(k) (2.1.16)

O-BFO ui(k+l) 0 0 R1  ui(k)

with boundary conditions

,-4
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E x(O) = E xo (2.1.17)

and

Er pi(T) = Er K,(T )E x( 1"). (2.1.18)

Hence. the relationship between descriptor and codescriptor vectors is

p,(k) = K,(k)E x(k) (2.1.19)

In view of (2.1.5). it is well-known [7.45] that the necessary (and sufficient) conditions for

existence of a minimum of (2.1.3) restricted to the class of linear state feedback policies relies upon

application of the Matrix Minimum Principle (MMP) [46] to the cost functionals. Noting that. in

general. the elements of F I and F 2 are independent, it is straightforward to take- the state feedback

form (2.1.9) of JI and J 2 in order to calculate

-F = 0 implies u,*(k) = - (Ri(k) + BrKi(k+l)B,) - 1 (BrK (k+I)Ai(k)) x (k) .(2.1.20)

8F,

Thus, (2.1.10) and (2.1.15) are verified. The discrete-time Riccati equation (2.1.11) can be derived

from (2.1.16). Let G, Bi Rj-1 B,. Then (2.1.16) is equivalent toI 1 1
EG x(k+l)Ai 0 1x(k)
0A A p,(k+l) -'QE pi(k) (2.1.21)

Therefore.

E x(k+) + G,pi(k+l) = Ajx(k) (2.1.22a)

But from (2.1.19) we have
P

r ,- I + G, jp(k+l) = Ajx(k). (2.1.22b)

.S.
?: Or.

Ar pi(k+l) = I K4- 1 + G1 i x(k) -Q,x(k) + ET K,E x(k). (2.1.22c)

Since (2.1.22c) must be true for all x (k). we require that

AT K -I +G A+Q= Er KE (2.1.22d)

It is clear that (2.1.11c) and (2.1.22d) are equal. The terminal condition (2.1.14) comes from

setting T1 = -1 in (2.1.3). See [5.7.44] for details.

0
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Re ks:

1) Equation (2.1.11) represents several forms of the discrete-time Riccati equation. All are

equivalent assuming the appropriate inverses exist.

2) The coupling of the Riccati equations (2.1.11). i E N occurs through the feedback matrices.

Fi(k). To see this. substitute (2.1.15) into (2.1.8). The resulting equations are coupled. Since

(2.1.11) depends on (2.1.8) and (2.1.15). the Riccati equations are coupled too.

3) After the lengthy discussion in Chapter I about the advantages of descriptor-variable

formulations, it is fortunate that the matrix E - 1 appears nowhere in the derivation. However,

a close examination of (2.1.11) reveals that Ki(k) is not easily obtainable given the right-hand

side of the equation. In fact, the case of E singular poses an interesting problem because then

there may be zero. one, or multiple Ki(k)s depending upon the right-hand side. Nevertheless.

the Riccati algorithm presented in Chapter 3 will recover K1 (k) without explicitly inverting E.

Because of the complications which arise from a singular E matrix, we impose the following

restriction.

Asswntion 2.1 : Throughout the remainder of this thesis, the matrix E is always assumed to be

nonsingular to working numerical precision.

2.2 Multirate LQ Descriptor Nash Games

This section develops the theory of multirate descriptor Nash games. The idea is that one DM

is constrained to control the system at a rate which is slower than the other DM. It turns out that

multirate games can be formulated and solved via single-rate Nash game theory if appropriate

limiting arguments are constructed. Theorem 2.1 in this section makes the last statement precise.

In addition, there are several practical situations where the optimization problem is more

accurately modelled by multirates than by single rates. Chapter I contains those details.

The organization of this section is identical to the last one. Subsection 2.2.1 formulates the

problem. Subsection 2.2.2 discusses the Nash solution of this multirate game problem. In this

!U
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thesis, the multirate theory is introduced here and mentioned in subsequent chapters as a special

topic. The reader is referred to [39] for a complete. self-contained treatment of multirate game

theory using a state-space formulation.
V

2.2.1 Problem Formulation

Consider the linear shift-invariant discrete-time system described by (2.1.1)-(2.1.2). This

'pgame problem has two decision makers, DM1 and DM2. DMI will be referred to as the "fast

player and DM2 will be referred to as the "slow player throughout the discussion. The discrete-

time descriptor system is evolving at a rate indexed by the integer-valued variable. k. DMI plays

at rate k. i.e., at every k. However DM2 is constrained to play slower, say at rate j. where j is also

an integer-valued variable and is related to k by a positive integer N as follows:

A k / N whenever k / N E 10 ..... } (2.2.1)
undefined otherwise

Thus. j simply indexes the state of the underlying dynamic system (2.1.1)-(2.1.2) sampled every

N"' time. But j and k are really dummy variables. Hence. it is preferable to define a real-valued

-, variable. L _ k / N. for all k. Then joint interaction of DMI and DM2 on the underlying system

*occurs if and only if

L A E 0, 1.2... AZ+ (2.2.2)
N 1 . Z

• .The condition (2.2.2) will play a central role in the characterization of the solution to this

multirate game problem.

The performance index to be minimized by each DM is given by (2.1.3) as before. The time-

varying matrices Si(k+l) and R1(k). i=1.2 are symmetric and positive semidefinite. Equation

(2.1.3) describes a finite-time game of duration T/ . If T, -* oo. then the infinite horizon multirate

14. LQ descriptor Nash game may be studied. The definitions (2.1.6) and (2.1.7) are valid as well.

i Furthermore, we seek the feedback Nash equilibrium, so (2.1.8)-(2.1.9) hold. However, this Nash

equilibrium will be for a multirate game: hence. some differences in problem formulation are to be

expected.

t- P
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In order to account for the fact that one DM is applying control at a slower rate. we define the

all-digital control policy as follows:

ALL DigtaL C~,atrL Pbcy
u'(k) if L E + :

u (k) A fk) iLE (2.2.3)
u( O else (no control applied)

Remark : In some applications, a multirate Nash game may arise where the *slow" player(s)

employs a sampled-data control policy, that is. the control law is held at its previous value until k

is such that the condition (2.2.2) holds. Such problems will be addressed elsewhere.

We solve the basic multirate. LQ game problem described above in the next subsection. In

doing so. we will discuss the meaning of a Nash equilibrium in a multirate setting.

2.2.2 Nash Equilibrium Solution of Multirate Descriptor Games

In this subsection, we show that under appropriate assumptions, the multirate game defined in

Subsection 2.2.1 can be solved using standard single-rate game theory with minor modifications.

The discussion and results of Subsection 2.1.2 are valid here. Now. we construct a limiting

argument which shows that as the small parameter e - 0. the all-digital control policy (2.2.3) is

achieved asymptotically.

For notational reasons. let us study a slightly simplified version of the all-digital multirate

game formulated in the previous subsection. Consider the weighting matrices as an ordered pair.

* Then. we are interested in the quantities (S 1(k+l). R (k)) and (S 2(k+1). R 2 (k)).

Define:

* (S 1(k+l). R(k)) (SI. R 1 ) whereS1 1 Oand R > 0 are constant matrices forall k. (2.2.4)

and

(k A (S2. R,) whereS, > Oand R, > 0 when L E Z +  (.

(S( + . = (2.2.5a

-. (0. II) where -0 otherwise

. Here. 0 is the zero matrix and I is the identity matrix.

* Ut
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The main results are equally applicable to arbitrary but bounded Sj(k+l). S 2(k+l). R1(k),

and R 2(k). ( when L E Z+ ). Furthermore. this setup accounts for the fact that DM2 is applying

control at a slower rate. In fact, as e-.. the optimal control of DM2 approaches, in the limit, the

all-digital control policy described by (2.2.3). Furthermore, under mild boundedness assumptions.

both J, and 12 are finite. Hence, the problem is well-posed. These last statements are supported

by the next result.

a Theow 2.1 : Characterization of Multirate Nash Games

For the pair (S 2(k+l). R 2(k)) as defined in (2.2.5). if A i(k) and K(k+l). i=1.2 remain bounded

for all k E H. then as e-0. 11 u;(k) ii- -0 whenever L 0 Z+ . Further, whenever L 0 Z+ .

II AJ (k) II- 0 where

,% AJ,(k) A yr(k+1)S,(k+l)y,(k+1) + ur(k)R,(k)u1(k) . (2.2.6)

Moreover. u, (k) is O(6) and so is AJ (k.

. Proof Throughout the proof all norms taken are assumed to be the standard Euclidean norm.

Also. it is useful to define

M-) "largest singular value of () -I I. and

o'( ) _ smallest singular value of ()

It is given in the problem statement that B 1. B 2. S, S 2. and RI are matrices with bounded

entries. Now as 6 - 0.1 II .-W 1 o whenever L f Z+ . In fact, o(R,(k)) = R,())

by construction. For the moment, assume that K l(k+l ). K,(k+ ). ,4 (k). and .4 (k) exist and are

finite. '[his requirement is investigated further in the next chapter. Consequently. for sufficiently

small E. I F(k) II 1 - oo. Specifically, from the relationshipE

I (X)-I l = 1 ( (X )-I ) for any matrix .X where 0"(X ); 0. (2.2.7)
ho (X )

• , and the fact that for any two positive semidlefinite symmetric matrices X. . ,,

" .
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I (X +Y)- 1 1 -I(X)- 1  (2.2.8)T(x +Y) (x ) n

we conclude that g-9

I (r2(k)~ 111IT(r,(k)) 1-1
l-' I - -'

< jg(R2(k))I1=-

Hence.

I u (k) I =- -(R 2(k) + B2rK 2(k+1)B2 )- 1 (B2K 2(k+I)A 2(k)) x(k) I (2.2.9a)

= I-(r-(k))-1 (BK2(k+l)A 2(k)) x8(k)I (2.2.9b)

< I - (r 2(k))- 1  . I BrK2(k+I)A 2(k) I I x(k) I (2.2.9c)

= C IBrK2(k+I)A 2(k) I " I x'(k) I -. 0 for all I x (k) I < 00 (2.2.9d)

Thus. u W(k) is 0(e). That is. there exist non-negative constants. M, and M 2 . such that

Mle 4 lu (k)l 4 M 2 e. For example. choose M1  0 and
M 2 =I(BrK2(k+l)A 2(k))x*(k)l. Obviously. R 2 (k) and 2(k) are

+-
Having established that u2 (k) is O (e). we show that AJ' (k) is also. When L f Z+.we have

from (2.2.5) and (2.2.6) that

AJ. (k) = ur (k) R2(k) u(k) . (2.2.10)

Clearly. AJ. (k) is I(e) 0 O(e) = (e)

C3

+
Remark : From Theorem 2.1. we conclude that lim H I2(k) I = 0 whenever L f Z Hence

the discrete-time Riccati equation (2.1.1la) reduces to the discrete-time Lyapunov equation "

Er K 2(k)E = Ar(k)K2 (k+I)A 2 (k) + Q 2(k).

Therefore. as e-0. II u, (k) H as well as I AJ (k) II 0 . and the all-digital control policy of

(2.2.3) is realized in the limit. Hence. the multirate descriptor Nash game problem proposed in

U°"
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Subsection 2.2.1 can be completely characterized using single-rate theory, if the pair

(S 2 (k+1). R 2(k)) = (0. I1) and e-0 whenever L 0Z + . Indeed. the multirate Riccati iterations

are decoupied when L f Z + . But when L E Z + , the coupling is present as in the first problem of

Section 2.1. Thus. multirate games require the periodic iteration of coupled discrete-time Riccati

equations.

V!
2.3 A Numerical Example

In this section. a numerical example is constructed which illustrates that there are situations

where a descriptor-variable game formulation is computationally superior to the corresponding

state-space game formulation in terms of numerical accuracy. Consider the system (2.1.1)-(2.1.2)

with performance indices (2.1.3). Let C I = C 2 = R I = R= I. Then choose

0.5 -1.0 -1.0 9.8 7e 2 1.37
A = 0.0 0.77 -1.0 B B 1 = 1.23 .B 2 = -. Oe -3

0.0 0.0 0.001 -1.Ole-3 1. -5--

and

1.Oe 0 1.0e 3 1.Oe 6
E = 0.0 9.9e5 1.0e9

q -1.9 5 6 7 7e-1 0.0 1.Oe 15

- Notice the wide range of magnitudes in E. As a descriptor game formulation. the scalings are

confined to the matrix E. However, if a state-space formulation is sought. the extreme separation

of magnitudes is spread throughout the matrices A . B . and B,. This is precisely the case which

degrades the numerical accuracy of the final results. Next. let

=.1.2345 1.98752e 3 9.0e 6 1.94731 1.566e 3 6.0e6
S 1.98 7 5 2e 3 1.Oe 12 1.Oe 15 and S, = 1.566e 3 1.Oe 12 1.Oe 15

9.0e6 .(e 15 1.10102e 38 1.0e 6 1.Oe 15 1.23976e 35

The weighting matrices S and S2 also contain elements with a wide range of scalings.

It is customary to employ single precision arithmetic when demonstrating numerical

difficulties. The effect is to show how serious errors can result from even low-order problems.

-Nssuming single precision (8 significant digits of accuracy), the feedbacks are computed using the
:I-,

. . .• - ',' ' ." .. . . € "" .. ¢. ,.' ... .-. ..2 ' . '.:' i.,
* s 4 -m
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methods described in the thesis. The result is

F I = [ 5.06829-4 -1.01567e -3 -9.86917e -41

F2 = [-1.73157e-4 1.22620e-3 -1.44510e-2]

Now, multiply equation (2.1.1) by E-1 . This yields three new matrices:

0.5 -1.00078 -0.99899
A= -9.88268e -1 4  7.77778e -7 -1.OI0le -6

9.7 8385e -17 -1.95829e -16 -1.94479e -16

9.86999e 2 1.37000 1
7A= 1.24223e-6 1. and ff2= 1-1.01037e-9

1.93132e -13 2.68088e -16

Although 1 . the matrices X. WB1. and W2 are now very poorly conditioned. Assuming the same

weighting matrices, we again compute the feedbacks using the best methods available. The result is

F3 =5.07253e -4 -1.01652e -3 -9.87737e -4]

F 2 =[-4.7869le-4 1.84028e-3 -1.3860e-21

Obviously, there is quite a difference - especially in the first element of F 2 where there is well over

a factor of two difference. In order to get an accurate appraisal of the deviations, consider the

descriptor system and run the feedback calculation using double precision arithmetic (16 significant

digits of accuracy). The result is

F1 =5.06600e -4 -1.0152le -3 -9.86498e -4]

F 2 = -7.68264e -6 8.94645e -4 -1.47528e -2]

The reduced precision coupled with the scalings present in the matrix E are responsible for the

*decreased accuracy. Assuming this last set of values to be most accurate. we compute a percent

difference which is summarized in Table 2.1.

The interesting item to note for this example is that the state-space formulation always yields

* numbers which are three times less accurate in terms of percent difference from true value. One is

led to conclude that the descriptor formulation is more numerically accurate (robust) for game

problems with nearly singular £ matrices. Clearly, if E is singular, the state-space formulation is

not even applicable. Also, if E is sparse. then multiplying by E-1 is undesirable because sparsity
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Table 2.1. Percent Difference Calculation

Component I Component 2 Component 3'

V F, Descriptor 0.045% 0.004% 0.042%
F I State-Space 0.13% 0.13% 0.125%
F 2 Descriptor 2154% 37% 2%

Op F 2 State-Space 6131% 106% 6%

is destroyed.

F-,

" 4

" i

- * :: ~ -
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CHAPTER 3

COMPUTATIONAL ASPECTS OF COUPLED DISCRETE-TIME RICCATI EQUATIONS

This chapter investigates the computational aspects of iterating the coupled discrete-time

Riccati equations presented in the last chapter. It was shown there that coupled Riccati equations

solve both single-rate and multirate descriptor Nash game problems. Though these games have

been solved in theory. the computational details of iterating coupled Riccati equations are highly

nontrivial.

As pointed out in Remark 2 following Fact 2.1, the Riccati equations are coupled through the

feedback matrices. That is. the ability to iterate the Riccati equations hinges upon the knowledge

of both feedbacks. But the calculation of one DM's feedback requires the knowledge of the other

DM's feedback (substitute (2.1.8) into (2.1.15)). This fact is the source of all numerical hardships

encountered when attempting to iterate coupled discrete-time Riccati equations. In order to

produce any algorithm for iterating the Riccati equations. the coupling must be removed.

Towards this end. Section 3.1 describes a feedback decoupling procedure. The equations of

Chapter 2 are manipulated in such a way that the coupling vanishes. Then an algorithm is stated

which solves for the feedback matrices and iterates the Riccati equations. Hence both Nash game

problems posed in the last chapter are solved numerically via dynamic programming. More

important. however, is the fact that the task of iterating two coupled discrete-time Riccati

equations is accomplished. Additionally. more notation is introduced. The section is concluded

with an existence analysis of the algorithm. Conditions are stated which insure that the Riccati

equations can be iterated.

Section 3.2 presents the computationally superior coupled discrete-time Riccati iteration

algorithm. To begin with. all relevant equations are assembled together. Assuming the feedback

matrices are known, the problem of efficiently iterating a Riccati equation is resolved by

considering numerous forms of the equation. Thus the final choice is well-justified. Then it is

observed that the terms in the Riccati and feedback expressions are composed of positive-

U
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(semi)definite. symmetric matrices and quadratic forms. Therefore, algorithms are devised for

computing these frequently-used quantities. Also, routines for multiplying general matrices and

matrices with special structure are given.

The task of computing the feedback matrices is addressed next. Unfortunately, the (implicit)

inversion of one general square matrix is required. In fact, one of two square matrices must be

inverted. Hence. the computational burden is heavy at this stage because the condition number of

each matrix must be estimated. Furthermore. matrices with special structure (e.g.. symmetric) are

less prevalent in the feedback expressions so the computational intensiveness problem is

exacerbated. Nevertheless. it is possible to rewrite the feedback equations in a form that exposes

additional structure thus alleviating the computational complexity a bit. At this juncture, the

feedback algorithm is presented. Finally, the coupled Riccati algorithm is built from the various

* low-level algorithms defined earlier in the discussion.

Section 3.3 studies the existence of solutions to finite-horizon problems. It is here that

previous results (in Section 3.1) are strengthened. Section 3.4 investigates the convergence behavior

-" of Riccati iterations for infinite-horizon problems. The existence of a region where the coupled

Riccati equations constitute a contraction mapping is established. The bulk of the section is devoted

to proving the contraction. The contraction mapping argument guarantees existence of and

convergence to a unique fixed point for an infinite number of Riccati iterations.

-" 3.1 A Decoupling Procedure

This section considers some preliminary computational aspects of iterating the coupled

discrete-time Riccati equations obtained in the previous chapter. First. the Riccati equations are

decoupled. Then an LQ Nash game algorithm is presented. Finally. various necessary and sufficient

conditions which govern existence and uniqueness of solutions to finite-horizon LQ Nash game

j problems (and hence coupled Riccati iterations) are stated.

-. 
:1
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Beginning with (2.1.6) use (2.1.8). (2.1.10) and (2.1.13) to obtain:

u '(k) - - F 1 (k) x'(k) = - (r1 (k))- 1 [BTKI(k+l) (A - B 2F 2(k))] x*(k) (3.1.1)

and

U = - F2(k) x (k) = - (r 2(k))- 1 [B K 2(k+l) (A - B Fl(k))] x*(k) (3.1.2) '

Notice that (3.1.1)-(3.1.2) are coupled equations where the coupling occurs through the

feedback matrices F1 (k) and F 2(k). In order to present an algorithm for solving the Riccati

iteration problem, this coupling must be addressed. Towards this end. we will use a cross-

substitution procedure to derive the functional relationships:

FI(k) = gl(Kl(k+l).K 2(k+l)) (3.1.3a)

F2 (k) = g 2(KI(k+l). K 2(k+l)) . (3.1.3b)

To simplify notation, we introduce

* ,(k) (r,(k))-I Bjr K,(k+l). i=1.2. (3.1.4)

Therefore. from (3.1.1) and (3.1.2) we conclude that:

Fl(k) = (r,(k))-1 [B{Kl(k+l) (A -B 2F,(k)) ] (3.1.5a)

= *I(k)A - 1(k)B,F.(k) (3.1.5b)

- I(k)A - w(k)B2 j(r,(k))-1 B TK Ak+ I (A -B IF Wk) (3.1-5c)

= * 1(k) I-B 2 I 2 (k) I4 + *'P(k)B2,*(k)BjF1 (k) (3.1.5d)

tHence.

I- *I(k)B21(k)B x IjF(k) 1 (k) I-B41 2(k) A (3.1.6a)

Similarly, for the feedback. F,(k). we get:

I- *I,(k)B 1* 1(k)B, I F,(k) = 'I'(k W I - B 1+ 1(k) -A .(3.1.0h) -
[ 2

Define.
--1(k) 1 - (k)B *,(k)B, (3.1.7a)

o-,-,(k) I - Y,(k)B I* (k)B, ( 3.1.7b).'
• .d

Ii U
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Then the functions g I and g2 described in (3.1.3) are given by %

F1 (k) = I 1(k) 4 1(k) I-B 2 2(k) A (3.1.8a)

F 2(k) = *2(k) I 2(k) I - B 1(k) A (3.1.8b)

- assuming that I(k) and 2(k) exist. Given the definitions of the weighting matrices, it

is clear that 1r1(k)j and 1r7(k)j always exist if KI(k+1) and K 2 (k+l) are matrices with
Ir~k - n IA I-

bounded entries. Existence of I =j(k)I- i-1.2 is a more delicate issue that will be dealt with

shortly.

We may now present an algorithm for solving the LQ descriptor Nash game problem.

Dynamic programming [5] dictates that the feedbacks must be solved for in reverse time. The

requirement of iterating two coupled discrete-time Riccati equations is automatically satisfied.

oLQ Descripior Nash Gam Algorithm

Step 1 : Initializations

. Set COUNT - T1
Set E K (COUNT+I)E = C, Si(COUNT+I)C . i=1.2. (Terminal Constraint)

l Step 2: Beginning of Main Loop

Compute 1r,(COUNTj . i=1.2 using (2.1.13).

Step 3 : Core Calculations
Compute *,(COUNT), i1.2 using (3.1.4).
Compute :,(COUNT). i=1.2 using (3.1.7).

If IE(COUNT)j exists. then compute it. otherwise go to Step 5.

If -_,(COUNT)j exists. then compute it. otherwise go to Step 5.

Compute F(COUNT). i=1.2 using (3.1.8).
Compute A,(COUNT ). i=1.2 using (2.1.8).

d Step 4 : Update Data

Store F,(COUNT). i=1.2 for this value of COUNT.

Iterate the coupled discrete-time Riccati equations according to (2.1.11) with i=1.2 thus obtaining
K, (COUNT ) from A,(C( ,' T + 1 ). i = 1.2.
Set COUNT - COUNT - 1.
If COUNT > 0. then go to Step 2. ,)therwise STOP the algorithm.

UL
-.
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Step 5 : Error Condition

Print an Error Message that indicates that one or more of the feedbacks are infinite at this stage of

the game. Then STOP the algorithm.

Remurk : Multirate LQ Descriptor Nash Game Algorithm

The corresponding multirate algorithm may be obtained by simply replacing step 2 with

Compute ri(cOuNT) . i=1.2 using (2.1.13). If L Z+ , then Set (r 2 (COUNT)j = 0.

Moreover. other simplifications are possible for a multirate game. If L f Z+. then

(r 2(COUNT) -- 0 which implies that W2(COUNT) = 0. Furthermore. (3.1.7) implies that

=,(COUNT) = E2(COUNT) = I which, in turn, implies that F I (COUNT) = V,(COUNT) A

and F 2(COUNT) = 0. Hence. the Riccati equations that have to be iterated reduce to

ET K 1(k) E = A T IK(k+1)-K(k+1)Bl(r(k))1BTKl(k+l) IA + QI(k)

Er K 2 (k)E = AT(k)K 2(k+l)A 2(k) + Q2(k)

Many facts become apparent from the descriptor Nash game algorithm. They are summarized

by the following:

Proposition 3.1 : Existence of Feedbacks

K 1 (k) exists if and only if I I=1(k)1 I < co Likewise. K(k) exists if and only if

1 -,(k) II < oo. Equivalently. there exists a unique solution (y k. , V) , k E H to the k'h stage

of the LQ descriptor Nash game described in Chapter 2 if and only if E(--(k)) ; 0 and

*o(E-,(k)) ;A 0 for that k. Therefore, there exists a unique solution policy (-'r. -) to the entire

Nash game if and only if 0 f { o(-i(k) I kEH. i=1.21.

Proof : Consider only single-rate games and let k=Tf . Then. K,(k+l). i=1.2 are well-defined

by (2.1.14). Assumption 2.1 guarantees that K,(k+l) is unique. Since. 0 < R, < cc and

11 B 11 < oo 117,(k) Iexists. Similarly. 0 < R, < co and II B, II < cc implies that Fr(k) exists.

Thus. F,(k) I i=1.2 exists if and only if K,(k+l) exists, respectively.

L -.-. -U * U' V,., U '
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Now. given that ri(k) i-=1.2 exists, then by (3.1.4) so does Vi(k) Furthermore, from

(3.1.8). it is clear that F(k). i=1.2 exists if and only if the corresponding is-i(k) exists. This

condition is the same as requiring !Z(Ei(k)) 0. i=1.2. From (2.1.11a). it is obvious that

boundedness of Ki(k) hinges upon boundedness of A i(k) which, from (2.1.8). occurs if and only if

I F,(k) I < co. i=1.2 . Therefore. Ki(k) exists if and only if (--i(k))- - < cc. That

is. og(--(k)) & 0. i=1.2. Uniqueness comes from the fact that (2.1.11a) defines a single matrix.

ET Ki(k) E given all quantities on the right-hand side of (2.1.11a) and Assumption 2.1. Finally.

the proof is completed by inductively applying the above argument to the next (i.e., k-1 ) stage

of the game as long as {K1(k). i=1.2) exists. If not, then the given LQ descriptor Nash game is ill-

*posed because either u (k)=oo or u (k)=oo or both for some k E H.
0q

Remark " Existence of Multirate Feedbacks

If L E Z+ , then the result of Proposition 3.1 applies. However, whenever L f Z+ . the remark

following the LQ descriptor Nash game algorithm indicates that both feedbacks always exist.

* Notice that if N =2. then the conditions L E Z+ and L f Z+ occur with equal frequency. But if

N >2. then L 9 Z+ occurs more often. Hence. as N increases, the frequency with which the

feedbacks are guaranteed to exist increases.

As an immediate consequence of Proposition 3.1. we have:

Corol/ary 3.1 : A sufficient condition for existence of a unique solution to the finite-horizon LQ

Nash game problem is that U(N1I(k)B.2 ' 2 (k)B 1 ) < 1 and U(*,(k)B I TI(k)B 2 ) < I for all k E H.

Proof : It is well known [18,47] that the singular values of a matrix are intimately related to the

problem of rank degeneracy. In particular. given a square matrix X with o'(X) -\" >0 and

another square matrix Y of compatible dimension with 5()'_ U y >0. then if . < 9_\. the

,/.
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matrix (X+Y) has full rank. Consider (3.1.7a) and take X =I and Y =41(k)B2*2(k)BI.

Obviously. M(I) = g() = 1. Hence as long as U(Y= U(T (k)B 21 2(k)B 1) < 1. the matrix -- (k)

can never be singular. Thus. -1(k) always exists. Similarly. consider (3.1.7b) and take

Y = 4I2(k)B 1 *j(k)B 2 leaving X as before. The same singular value argument can be applied to

this case. which then proves the Corollary.

0

Coro/iay 3.2: Another sufficient condition for existence of a unique solution to the finite-horizon

LQ Nash game problem is that o'(*I(k)B 2*2(k)B 1) > I and o'(*(k)B 1*1(k)B 2 ) > 1 for all k E

H.

Proof : Using the same singular value argument as discussed in Corollary 3.1. consider (3.1.7a)

and take Y = I and X = Ir(k)B 2 I(k)B1 . As long as oa(X) > 5(Y) = 1. the matrix E1(k) can

never be singular. Similarly. consider (3.1.7b) and take X = *I,2(k)B I* j(k)B 2 leaving Y as before.

The same singular value argument can be applied to this case. which then proves the Corollary.

o

We can carry these last two corollaries one step further by restricting attention to those
."

games in which both players have a single input to the system. In this case. define the scalars:

oal(k) 4 1(k)B, '

io,(k) A4,(k)B

Then. -1 (k) = 1 - ¢a(k)w2(k) = 1 - 2(k)o(k) = -,(k). Hence.

Coro/ary 3.3 : A unique solution to the finite horizon LQ Nash game problem with single inputs

for each player exists if and only if w(k) ;d ((o,(k)) - 1 for all k E H.

Proof : Obviously, E(k) = -(k) are scalar quantities for the situation when each player has a

single input. Therefore. singularity of both occurs if and only if

.. . . . .S S S .. . . . .. . . . .. .S
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cs(k)w2(k) = w2(k)wm(k) = 1

This condition is equivalent to

l(k) = (o2(k)) - I or a2(k) = ((al(k)) - 1

0

In summary, these results provide on-line checkable conditions so that the descriptor-game

algorithm can monitor itself and determine if a Nash solution strategy exists. In the next section.

algorithms are developed for iterating coupled discrete-time Riccati equations in a computationally

efficient manner.

3.2 The Coupled Discrete--Time Riccati Algorithm

In Section 3.1 an algorithm is presented for solving LQ descriptor Nash games. The process

involves iterating coupled discrete-time Riccati equations. This section describes a more efficient

and numerically robust procedure for performing one iteration of two coupled, discrete-time

i Riccati equations. As a byproduct of the analysis, we obtain an equally efficient procedure for

iterating a single discrete-time Riccati equation which arises in the study of the optimal LQ

regulator problem.

3.2.1 Algorithm Implementation

This subsection reviews the pertinent equations involved in iterating two coupled discrete-

time Riccati equations. A complete discussion of the equations may be found in Section 3.1.

Because positive-(semi)definite symmetric matrices are frequently encountered in this coupled

Riccati problem, the Cholesky factorization [17.24] will be used to expedite the calculations. Recall

that any positive-(semi)definite symmetric matrix. A . may be factored as A = XrX. where XA is

upper triangular. It is preferable to work with X.., rather than directly with A because of the

triangular structure. For example, it is often necessary to calculate C A -1 B where B is some

other compatibly-dimensioned matrix. This can be accomplished by solving the symmetric linear

%.p
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system A C = B for C. However. if the Cholesky factor of A is available then the linear system

is equivalent to solving two triangular systems Xr D = B and XA C = D. This technique has

two major advantages over working directly with the original system A C = B. First. triangular

systems are extremely easy to solve. Second, the inverse of A is never explicitly computed. As a

general rule of thumb, the explicit computation of an inverse should be avoided at almost any cost.

For the case where A is dense and has no special structure. the Cholesky factorization is replaced

by the LU factorization. In this factorization. U is upper triangular and L is the product of

elementary lower triangular and permutation matrices.

Remarks Software Engineering

The solution of this coupled Riccati problem requires software designed to handle linear algebraic

equations. Frequently. positive-(semi)definite symmetric matrices appear which require special

handling. The UNPACK [24] FORTRAN library is the best known and the most widely

recommended [21] software package used for these situations. For all the algorithms which follow,

Single (S) precision arithmetic is assumed. Therefore. only subroutines beginning with 'S" are

referenced from the LINPACK library. If Double (D) precision is used. then the first letter of the

corresponding LINPACK routine is D'. However. L-A-S is a double precision package. Since the

*coupled Riccati software will be integrated into L-A-S. the software listings in Appendix A refer to

the double precision versions of LINPACK. Second. all of the Riccati software discussed here is

coded in FORTRAN. This decision is primarily motivated by the fact that both L-A-S and

LINPACK are FORTRAN-based packages. In addition. FORTRAN is generally chosen for coding

numerical software.

Several of the algorithms require at least one multiplication of two matrices with no special

structure (like upper/lower triangular). For this reason, we define algorithm MLTPLY. which

multiplies two arbitrary. but compatible matrices. In particular given the matrices A and B.

MTPLY is useful for computing the forms A B and .4 1 B. Notice that the case where both A

and B are symmetric offers no advantages since the resulting matrix is. in general. not symmetric.

.~7 .
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Hence. algorithm MLTPLY is applicable. Since MLTPLY is too simple to be given as a sequence of

steps. a copy of the FORTRAN source code is included in Appendix A.

Now the equations needed to iterate coupled Riccatis are reviewed. The Riccati equation for

Decision Maker i (DMi). i E N ~ 1. 2) at stage k is given by

R- Er Kj(k)E

V A T k)K 1 (k+1I)A,(k) - ATrkWK (k+ 1)B, (r(k))-l B fK,(k+1OA j(k) + Q (k) (3.2.1)
.%. where

A I(k) A -B 2 F 2 (k) and (3.2.3a)

A A 2 (k) A -B 1 FI(k). (3.2.3b)

The feedback employed by each DM is

N FIN) = (RI(k) + BIK(k+l)BI)- (B{KI(k+I)A 1 (k)) (3.2.4a)

= (r,(k))-1 [BTK (k+l) (A - B,F,(k))] (3.2.4b)

an - Ii(k)J *11(k) jII - B2'42(k) I A (3.2.4c)

F,(k) = (R 2(k) + B7'K1 (k+1)B 2 )~ (BIK 2 (k+l)A,(k)) (3.2.5a)

= (172(k))-l [BrK 2 (k+l) (A - 81 F1 (k))] (3.2.5b)

* . - =E(k)J *,(k) I I- B1 *1(k) 1 A(..c

* where

_Ik 1- * (k)B'P 1 (k)B I and (3.2.7a)

=,k AkBI W ,(-.b
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3.2.2 Iterating a Riccati Equation
i

This subsection determines an algorithm for iterating a Riccati equation assuming the

feedbacks are known. The goal here is to minimize the number of inverses appearing in equation

(3.2.1). From a computational viewpoint, the right-hand side of the Riccati equation (3.2.1) is

'7most efficiently calculated by using a slightly modified form of (3.2.1). To see this. start with

(3.2.1) and use the relations (3.2.4) and (3.2.5) to write

Er Ki(k) E

= Air K (k+1) A i - Ai Ki(k+1) B i (ri)
-1 BT Ki(k+1) A; + Qi (3.2.8a)

= A T K,(k+I)A i - A T Kj(k+l)Bi(ri)- 1  
1 1-lJBr K,(k+l)Ai + Q, (3.2.8b)

= A r K,(k+I)A i - (AT K,(k+I)B, r,-l)r,(r-l BT Ki(k+l)A,) + Q, (3.2.8c)

=A K,(k+1 A, - F r  , F, + Q, (3.2.8d)

where the dependence on k has been dropped for all variables except K,.

Remark : It is a simple exercise to verify that (3.2.8d) can be written as:

Er Ki(k)E = A L K,(k+l)Ac + FT RF, + Q, (3.2.8e)

where ACL A -B 1 Fn-B 2 F2 . This form is as compact as (3.2.8d). Indeed. this

computationally attractive form may be found in [7.p.253] where the setting is largely theoretical.

However, it will become evident that it is less efficient to use (3.2.8e) to iterate the Riccati

equations, because the Cholesky factor of R, is never computed whereas the Cholesky factor of r,

will be available from another calculation.

One additional simplification is possible. In view of (3.2.6). equation (3.2.8c) can be rewritten

as

E '(k) E = A;' I- Ir + Q, (3.2.8f)

which is extremely compact.

It is true that each Riccati equation can be computed directly as a I unction of K 1( k) and

K 2 (k). but the resulting equation is very complex and quite otten the leedbacls are needed.

,/ - ..... . ..-
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Furthermore, once the feedbacks are calculated, the Riccati iterations are most efficiently computed

using (3.2.8f) - an equation with no inverses.

Before presenting the algorithm for iterating a Riccati equation. several small algorithms must

be defined. This is done in the next few subsections. Algorithm QDFORM computes a quadratic

form or variations of a quadratic form. Algorithm PSICOM computes the variable 1'i(k) as defined
r.

in (3.2.6). Algorithm XTRACT computes Ki(k) given the right-hand side of (3.2.8f). Algorithm

DISRIC combines these algorithms to perform one iteration of a Riccati equation.

3.2.2.1 Algorithm QDFORM

It is clear that the quadratic form B T A B where B is arbitrary and A is a positive-

(semi)definite. symmetric matrix appears frequently. Anticipating the need to compute several

quadratic forms, let us introduce the following algorithm.

Algorithm QDFORM

" Step I: Factor A - X(T (4 where XA is upper triangular. XA is called the Cholesky factor of A

"*l and is obtained via the LINPACK subroutine SPOFA.e*.

Step 2 : Compute Y = X A B taking advantage of the fact that XA is upper triangular.

• " Step 3 : Compute D = yT Y taking advantage of the fact that D is symmetric.

. Remarks : As coded in Appendix A. Step 1 can be bypassed if the Cholesky factor of A is already

", available. Steps 2 and 3 require one optimized matrix multiply DO-Loop in FORTRAN. Also, if

the quantity C + Br A B. where C is symmetric, is desired. then algorithm QDFORM is

applicable if Step 3 is modified to include the array C as the initial condition in the multiply DO-

Loop. The same can be said for the form C - Br A B.

%4
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3.2.2.2 Algorithm PSICOM
U

The computation of *1 (k), i=1.2 establishes the foundation upon which all subsequent

calculations are built. Observe that (3.2.4). (3.2.5). (3.2.7) and (3.2.8) depend on Ii(k). It is

apparent that a thorough investigation of the computation of 11(k) is needed. From the definition

(3.2.6). it would seem that the explicit computation of (rF(k))- 1 is necessary. However. this is not

the case. Since ri(k) is a positive-definite, symmetric matrix, the UNPACK 124, Chapter 3)

software for general positive-definite matrices is used to circumvent this problem.

% Although *i(k) can be found in 4 easy steps. the result of each step of the calculation is

needed in later computations. For example, the quantity W defined in Step 1 of algorithm PSICOM

is used later. so let

WN(k) A BT K 1 (k+1). and (3.2.9a)

W,(k) A B1, K 2 (k+l) (3.2.9b)

Hence it is desirable to create an algorithm that computes and returns lt(k) as well as all the -

intermediate quantities. Since *i(k) is a function of rI, B, and K i. the subscript i can be dropped.

". Also, the dependency on k can be suppressed. The algorithm for computing P is now stated.
%U

Algorithm PSICOM

Step 1: Compute W A Br K using algorithm MLTPLY.

Step 2: Compute r using algorithm QDFORM.

Step 3: Factor r = Xf Xr where Xr is upper triangular. Xr is called the Cholesky factor of r

and is obtained using the LINPACK subroutine SPOFA.

*" Step 4: Form f = r- 1 W without explicitly computing r-1 using the I.INPACK subroutine4.-

SPOSL.

Rem ks Step 4 solves the linear equation r • W for I one column at a time using the

Cholesky factor Xr. Thus. it is not necessary to explicitly form the inverse of F. Algorithm

• n

",............................-~.
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PSICOM takes B. K. and R as input and subsequently produces W. r. Xr. and * as output.

Hence. if V is needed for a later calculation and algorithm PSICOM is invoked, then r need not be

computed using algorithm QDFORM because PSICOM will return it as a byproduct of the

calculation of *. The Riccati algorithms will exploit this savings in computation.

3.2.2.3 Algorithm XTRACT

* -Given the right-hand side of (3.2.8f), the quantity Ki(k) is immediately known only if E = I.

If E differs from the identity matrix, then additional steps must be taken to extract Ki(k) from

the quadratic form ET Ki(k) E. Algorithm XTRACT performs exactly that function. Specifically.

, i.-suppose the right-hand side of (3.2.8f) evaluates to a positive-definite. symmetric matrix called Z.

Then Z has a Cholesky factorization. Z - X5 Xz. Similarly, the kernel of the left-hand side of

- (3.2.8f) has a Cholesky factorization K AXk X. Equating both quantities yields

SET XK XA E = Xzr Xz

Algorithm XTRACT is based on this observation.

o* Since E is assumed to be dense and with no special structure, the LINPACK software for

general matrices is employed. Assumption 2.1 guarantees that the inverse of E exists. However, as

with algorithm PSICOM. the inverse is never explicitly computed. Instead the LU factorization of

E is used. Now, the algorithm for extracting K 1 (k) is stated.

Algorithm XTRACT

Step 1 : Factor Z = XT XZ where XZ is upper triangular. Xz is called the Cholesky factor of Z

-., and is obtained using the LINPACK subroutine SPOFA.

Step 2: Factor 1 = LE 1
1E where UE is upper triangular and LE is the product of elementary

lower triangular and permutation matrices. LE 11E is called the LU factorization of E

and is obtained using the LINPACK subroutine SGEFA.

I2.
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Step 3: Solve the linear system Er Xr = Xf for Xx without explicitly computing E - 1 using

the LINPACK subroutine SGESL.

Step 4: Compute K = XK XK taking advantage of the fact that D is symmetric.

Remarks : Step 3 solves the linear equation Er Xk = X r for Xx one column at a time using the

LU factorization LE UE. Thus, it is not necessary to explicitly form the inverse of E. Step 4

requires one optimized matrix multiply DO-Loop in FORTRAN. Algorithm XTRACT is only

invoked if E i I. However. if E should possess additional structure (e.g.. diagonal). then steps 2
.4

and 3 should be replaced by another algorithm which exploits that structure.

3.2.2.4 Algorithm DISRIC

This algorithm combines the previous algorithms to perform one iteration of a Riccati

equation. It is assumed that the feedbacks ( and therefore A j. iEN ) are known. First the right-

hand side of (3.2.8f) is computed. Then Ki(k) is extracted. The algorithm for iterating a Riccati U

equation is stated below.

Algorithm DISRIC

Step I: Compute ' using algorithm PSICOM. F and Xr will also be computed and provided upon

return.

Step 2: Form V = K - T"' F using algorithm QDFORM taking advantage of the fact that

X r is already available.

Step 3: Form Z = Q + A r V A using algorithm QDFORM.

" Step 4: Compute K(k) from the right-hand side of (3.2.8f) using algorithm XTRACT. if

necessary.*d

Remarks Notice that every step of algorithm DISRIC is a call to one of the previously-defined

algorithms. This indicates that the low-level routines are very modular. This is one of the
.4

.4°•

q"

°U
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trademarks of a good structured-programming approach.

N
3.2.3 Calculating the Feedbacks

Having devised a method for iterating a Riccati equation, we turn our attention to calculating

: the feedbacks. Using (3.2.6) we can rewrite (3.2.4a) and (3.2.5a) as

F,(k) = Vi(k)Ai(k). i E N. (3.2.10)

SBut. this form assumes knowledge of the other DM's feedback matrix. Initially neither F, nor F 2

is known. Hence either (3.2.4c) or (3.2.5c) must be used to compute one of these matrices based

upon some criterion. Each equation is undesirable because it contains an inverse. Thus. it is

ultimately necessary to compute the inverse of one general square matrix. Furthermore. the

decoupling procedure used to produce (3.2.4c) and (3.2.5c) clouds the presence of symmetric and

positive-definite matrices. Therefore. it is worthwhile to study these equations with the intention

of exposing any additional symmetry and/or positive definiteness. Towards this end take (3.2.4c)

and premultiply by ---1 (k). The result is

.- (k)FI(k) = *I'1(k) I.--22(k) A (3.2.1 la)

Substitute (3.2.6) and (3.2.7a) into (3.2.11a) to obtain

" ? I -(r')- B
[I - (r1 (k))- 1 BK (k+l)B 2(r 2(k))-lB2K 2(k+I)B I F 1 (k) (3.2.1 ib)

= (r(k))-lBrjK,(k+l)A - (r(k))-IBrK (k+I)B 2(r 2(k))-IBrK2(k+I)A

Premultiplying by rl(k) yields

[ r(k) - BTrKI(k+I)B(F(k))-IBr K,(k+I)BI ]F(k) (3.2.11lc) ,

= B{K,(k+)A -BrK,(k+I)B,(r,(k))-IBK,(k+I)A

Define the positive-(semi)definite. symmetric matrices

X1(k)_A B, (r,(k))- 1 BI- . i E N . (3.2.12)

Then in view of (3.2.9) and (3.2.12), equation (3.2.1 1c) reduces to

%J r,(k) -WIk)X2()K,(k+l)B 1I PFIk W(k) I-X2(k)K,.(k+l) A .(3.2.13a)

I

,q
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A similar derivation applied to (3.2.5c) gives

r 2(k) - W 2(k)X1(k)KI(k+1)B 2 I F 2 (k) = W 2(k) I-x(k) Kl(k+l)A (3.2.13b) -

Define

Y1(k) k ) - WI(k)X2(k)K 2(k+l)BI. and (3.2.14a)

Y2(k).. r 2(k) - W 2(k)Xi(k)K 1 (k+l)B 2  (3.2.14b) "p

Then, it is wise to choose Y,(k) such that it has smallest condition number over all other Yj's.

i E N. Specifically, suppose that DM i has Yi(k) with smallest condition number. Obviously we

want to compute first.

It is apparent that the matrices Xi(k), i E N are needed for the feedback calculation. Since

algorithm QDFORM is not suited to handle an inverse as the kernel of the quadratic form.

algorithm CHICOM is presented.

Algorithm CHICOM

Step 1 : Compute Y = fXr J B using LINPACK subroutine STRSL. Xr is the Cholesky factor

of r obtained from algorithm PSICOM.

Step 2: Compute X = yr y taking advantage of the fact that X is symmetric.

The following algorithm determines i and also computes Y(k), for all i E N. Since the final result

of this algorithm is the computation of i. it is most advantageous to code this as an INTEGER

FUNCTION in FORTRAN which returns an integer equal to i. Note that for this algorithm the

dependence on i E N cannot be suppressed.

Algorithm EYFJlAT

Step 1 : Compute X(k). i E N using algorithm ClllCOM.

Step 2: Compute T1 (k) = W1(k) X2(k) and T,(k) = W,(k) Xj(k) using algorithm MI-TPLY.

.-. *.p..'*.' " ",' p ? * " p';,'.. '2' . ' p.'. " ,'.'.'.'.*.*,'. '*': ",. '-,,, ." . "," '. . .'' "-', ""'.".""'':.".,
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Step 3: Compute Vl(k) = Tl(k) K 2(k+l) and V 2(k) = T2 (k) A (k+1) using algorithm MLTPLY.

Step4: Compute Yj(k)=r1 (k)-V(k)B and Y2(k)=r 2(k)-V 2(k)B 2  in one matrix

multiply DO-Loop.

Step 5: Factor YI(k) = L y U y, and Y2(k) = L 2 U. where Uy, is an upper triangular matrix and

L 1, is the product of elementary lower triangular and permutation matrices. i E N.

These factors are obtained via the LINPACK subroutine SGECO. As a byproduct of this

subroutine call, an estimate of the conditions numbers of Y_ K- K(Y). is returned.

Step 6: Compute i such that K, = mi (Ki.
i E N

Remarks Since Yj(k) has no special structure and an estimate of the condition number is needed.

the LINPACK subroutine SGECO is the obvious choice in step 5. Algorithm EYEHAT is

" computationally in'tensive! This is the price paid for basing the choice of which matrix to invert on

the lowest condition number criterion. Another guideline might be to invert the matrix with

smallest dimension. This would lessen the computational burden born by the algorithm, but might

lead to inaccurate results in unusually conditioned circumstances.

i It is clear that the first feedback must be found by finding an inverse of an arbitrary matrix.

Subsequently. the other feedback can be calculated via (3.2.10) using algorithm MLTPLY. The

next algorithm computes the feedbacks for a 2-player game where the value of i is already

available from the criterion defined in algorithm EYEHAT.

Algorithm FEEDBK

Step I: Compute T1 = 1; W; using the UNPACK subroutine SGESI. where the L-U

decomposition is obtained from algorithm EYEHAT.

Step 2: Compute U1 1 I -X (k) Kj(k+1). j d i in one matrix multiply Do-Loop.

Step 3: Compute V= T1 U; using algorithm MLTPLY.

."..
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Step 4: Compute F,(k) = V A using algorithm MLTPLY.

Step 5: Form A =A - B i F - where j d i in one matrix multiply DO-Loop.

Step 6: Form the other feedback Fj i A j where j d L

Remarks : Algorithm FEEDBK is sufficient for computing the feedbacks only. However. the

ultimate goal is to perform one iteration of each Riccati equation described by (3.2.8). For that

reason, it is desirable to modify step 5 above so that other quantities are available. Specifically,

change it to Form A I A - B 2 F 2 and A 2 = A - B I F I in one matrix multiply DO-Loop.

3.2.4 Computation of Coupled Riccati Iterations

From (3.2.8f), notice that if F i = 0. then just compute the Lyapunov equation

Er K(k)E = AT(k)Ki(k+l)Ai(k) + Qi (3.2.15)

using algorithm QDFORM. Otherwise. if FJ = 0. j ;d i then compute

Er K(k)E = A r [K(k+l) - . rr vi + (3.2.16)

using algorithm DISRIC. Regardless of the condition encountered. the following algorithm

performs one iteration of coupled discrete-time Riccati equations.

Algorithm RICCAT

Step 1 : Compute the feedbacks using algorithm FEEDBK.

Step 2 : Iterate each Riccati equation using algorithm DISRIC.

Remarks : Computation of Multirate Coupled Riccati Iterations

If L E Z. the Riccati equations to be iterated are the same. However, whenever L f Z+. several

simplifications are possible. First,

F1 (k) = I'(k) A (3.2.17a)

F 2(k) = 0 . (3.2.17b)

Hence, the Riccati equations that have to be iterated reduce to
I[U
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Er K 1(k)E =Ar IjK1(k+0)- Vfrt' J,*IIA +Qj (3.2.18a)
Er K 2(k)E = Ar(k)K 2(k+l)A 2 (k) + Q2  (3.2.18b)

Cnduding Remarks"

"Wt Section 3.2 describes the numerical solution of a coupled discrete-time Riccati equation

problem motivated in Chapters 1 and 2. During the development of the solution method, several

algorithms are defined. Collectively, they serve to provide a rich numerical foundation upon which
.1_

more sophisticated algorithms can be built. Thus. the Riccati algorithms presented here are an

example of using software to efficiently solve a frequently-formulated game problem. This is the

overall spirit behind CACSD endeavors. The results discussed in this subsection apply to the

standard LQ regulator problem and the Nash equilibrium solution of an LQ state-feedback problem

(the coupled Riccati case). The issues associated with solving single and coupled discrete-time

Riccati equations are delineated. As a consequence of this analysis, it is shown that the numerical

intensiveness is directly related to the criterion used for determining i via algorithm EYEHAT.

Beyond that fact. the Riccati iteration procedure basically boils down to computing one or more

quadratic forms, most conveniently calculated by algorithm QDFORM.

3.3 Finite Horizon Problems - Existence Issues

In this section we investigate conditions for which the existence of solutions to finite-horizon

problems is guaranteed. To begin with. Proposition 3.1 in Section 3.1 is based upon a singular value

argument applied to E(k). However utilizing the definition (3.1.7), a stronger result can be stated.

Define:

fl 2(k) A4I(k)B 2  (3.3.1a)

.f l,,Wk * 2(k)B 1 (3.3. 1b)

~ Then. E(k) = I - fl 12(k) fl 21(k) and -2(k) = I - (12 1(k) (I12(k). Hence,

'pi

'p
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,,p.

Propositioa 3.2 : Existence of Feedbacks for Finite-Time Problems

K1 (k) exists if and only if X( 11 12(k) 1 21(k)) 0 1 for all eigenvalues. K 2(k) exists if and only if

X( 0 21(k) a11 2(k)) ;d 1 for all eigenvalues.

Proof : Apply the similarity transform that puts 111 2(k) 1121(k) into Jordan form to Z1(k) and

the first statement follows immediately. Apply the similarity transform that puts 0l2 (k) 12(k)

into Jordan form to ---(k) and the second statement follows immediately.

0

3.4 Infinite Horizon Problems - Convergence Issues

Before concluding this chapter, an investigation of the existence of solutions to the infinite- d

time LQ Nash game is conducted. To the author's knowledge, virtually no work has produced

either necessary or sufficient conditions regarding existence of solutions even though the theory

governing the one-player optimal infinite-time LQ regulator problem is well-established [5.481.

Solutions to single-rate infinite-time LQ Nash games will be studied. We determine conditions

under which the existence of an infinite-time solution is guaranteed.

3.4.1 Preliminaries

Let X denote the space of all nxn symmetric matrices. Let Y C X denote the set of all

positive-semidefinite symmetric matrices in X. Clearly X is a linear vector space and Y is a closed

subset of X. Let X. Y E X be any two arbitrary elements of the space X. Then

(X.Y) = X 0

denotes an arbitrary element of the product space X x X. Now, let I. 1 denote the standard

induced matrix 2-norm. Then for any (X. Y) E X x X . define

II(X Y)f ) 1 X I,+IY I, (3.4.1)

to be the norm on the product space. Obviously, the space X x X with the norm defined by (3.4.1)

I -I
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is a complete normed linear vector space. Hence, it is a Banach space.

Assumption 3.1 : Throughout the remainder of this section. the matrix E is always assumed to .J

equal the identity.

We have two maps:

R, : XxX -* X and R2 : XxX - X.

Specifically. from (2.1.1lc). consider

R, (X. Y) A Ar(X.y) [X-I+BRi-lBr -AI(XY) + QR Y) A' X, Y Y-1 + QR -IB

-R2 (X.Y) A2(x.y) 2y+BR lBr A 2(X.Y) + Q2
I

whereA(X.-Y) A - B 2F 2(X .Y)andA 2 (X, Y) A -BF 1 (X.Y). Define

. .i( ) A X _ +  R  i -I ]

Oj( XP~A -1 + B 1R j IBT

Then.

R, (X,Y) A Ar(XY)(bI(X)AI(XY) + Q,
(3.4.2)

R 2 (X.Y)_A Ar(XY)<,(Y)A(X.Y) + Q 2

Notice that A g(X. Y) and A 2(X- Y) serve to couple the two equations of (3.4.2). Consider

stacking the previous two equations. Then define:
-. (X.'Y) A  R, (X.Y) 0,.

0= R2 (X - )

Given this setup we observe that

R : XxX - XxX.

The following result is the most important one of this chapter. It provides sufficient

conditions for existence of and convergence to the single-rate infinite-time LQ Nash equilibrium

solution.

Theorem 3.1 Existence and Convergence of Solutions to the Infinite-Time LQ Nash Game

.'" ee
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Given the system (2.1.1)-(2.1.2) with performance indices (2.1.3). then there exist constants.

0< Cj <land 0 < 2 < 1 which define the matrices R and k 2  - I such that for all
e l  92

R1  and R 2  where o(R 1)> ± and R_(R2)> 1 and all system matrices A with

I A I < ( 1. 92) < 1. the set of coupled difference equations:

KI(k) = At(k) (K,(k+l))_l + B,(R,(k))_IB r  A 1(k) + Q= A ~k)+ 1 (3.4.3)""

K 2(k) = A21(k) (K 2(k+l))-l + B 2(R 2(k))-lB2 J-1 A 2(k) + Q2

constitutes a contraction mapping and hence converges to a unique fixed point denoted (K;. K*).

Proof : To begin with, let 9- - 0 and 2" - 0 independently. From Theorem 2.1 we know that in

the limit. IFI I = IF2 1 = 0 which implies that A - A and A2 -' A in the limit. Furthermore.

I(R-- 11 = C -. 0 and I(2)-lI = 492- 0 by construction. Hence, the two coupled discrete-time

Riccati equations tend toward two decoupled discrete-time Lyapunov equations given by

K 1 (k) = A" KI(k+l)A + Q.
(3.4.4)

K 2(k) = Ar K 2(k+1)A + Q2

in the limit as r, - 0 and 2 - 0.

It is well known that this set of equations has a unique positive-definite symmetric fixed point

(K I. K 2 ) if and only if I A H < 1. Moreover. (3.4.4) is a contraction mapping, so that for any

positive-semidefinite symmetric initial guess (K 1(0). K2 (O)) . convergence to the fixed point is

assured as k -o.

Now we must argue that for a given problem, there exists an open neighborhood of

-- =0 characterized by the constants Ej and C such that for all A with

1A I < ( , -) < 1. equation (3.4.3) constitutes a contraction mapping. The next subsection

will more than fulfill this requirement.

%-|
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3.4.2 Contraction Mapping Argunent

If the mapping R is to be a contraction, then the following condition must be satisfied:

I IR(X. Y) - R(Z. W) 1 4 a I(X. Y) - (Z. W) 1 (3.4.5)

for all X. Y. Z. W E Y and 0 4, a < 1 . Straightforwardly, compute:

IR(X.Y) -R(Z.W)l = IR, (X.Y) - R, (Z.W)1 2 + IR 2 (X.Y)-R 2 (Z.W)1 2 .

5Similarly,

i(X.Y) (Z.W)l = ix -z '2 + ly-WI 2 .

*' Therefore. the condition (3.4.5) is equivalent to

IRI (X.Y)-R,(Z.W)2 + HR2 (x.Y)-R 2 (Z.W)12 (4

< a (I.X -Z 12 + iy-W 2 (3.4.6)

The purpose of the ensuing discussion is to completely characterize those cases for which (3.4.6)

holds. The contraction mapping that we seek occurs on a closed subset of Y x Y. Hence it must be

shown that there exists a region A C Y x Y where (3.4.2) maps A into itself. Toward this end. the

following facts are established.
'.

Fact 3.1: Given any X E Y then I i(X) 12  1 X 12 for all i E {1.21.

Proof : Since X 0 and B RJ-BF 0 0.

t@>(X) = 1 1< -X 12'..: o(X-1 + BIRI-IB7 ) o'(X - 1 )

where T( ) denotes the smallest singular value of (

0

To simplify the derivation, introduce the following definitions "

"p,(X.Y)_ A,(X.Y)2, ,i=1.2 (3.4.7)

, =1.2 
(3.4.8)I-(o,(X. y,)2

," " '¢ " " "" " "", " " " " . . , " - " , . " " . " . ," " " : " , """, " " "4 " " " " ". " " " " ' '.' " "2" ""." " " - ''
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B 6 A IX EXIIX2<48) (3.4.9)

Equation (3.4.9) describes a closed ball of radius 8.

Then we have:

Claim 3.1 : Existence of a Region where the Riccati maps are Into

Suppose pi(X. Y ) 4 P' < 1 and" A )Q12 for i=1.2. Given any (X. Y) E Y X Y suchi 1- (P".)2

that I X 1. 4, 91 and I Y 12 4. T 2 . then for all such X. Y it follows that (X, Y) R (X. Y) has the

property that I X 12 4 T, andIY 1<2 &2. Hence. R (X. Y) mapsA B-g xB12 C YXYinto

itself

Proof Notice that from (3.4.2):

IX 12 = IAI(XY)4j(X)A 1 (X.Y) + Q 1 12

< IA 1(X.y)I 2 -. 1 (X)12 + 1Q12

2 12 + 1Q1'2

where Fact 3.1 has been utilized in the last step.

Thus.

i 12 < (p(X.Y)) 2 IX 12 + 'Q 1 1-2

( (F')2- + 'Q 1 2  ( IQ +12 Q 1  6
1 ' )2 ..

* Similarly.

S17 H2 = IIAr(X.Y)4 2(Y)A 2(XY) + Q2112
<IA~y ) 2.1y I2 + nQH ,

S(F2) 2 'S +  Q 2 12

(p-2)2 II Q2 2I. +"
= - "~) + I Q Q 11, = - ."-

- ( P- 2

Therefore,1 II, 4( < ,IIY 1 (<2 .and (. ) E A B-S X B

[] U

-. S.."
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Now. we proceed to derive conditions such that (3.4.6) holds in the region A. In particular.

9 focus on the map RI (X. Y). A parallel argument can be developed for the map R 2 (X, Y).

Given any (X. Y) and (Z. W) E X X X,

R, (X.Y) - Rt (Z.W)
= Ar(X.Y)OI(X)A,(X.Y) - Ar(ZW)Ol(Z)A,(Z.W) ] " 3.4.1O)

Application of the matrix identity

WX - YZ 2 (W- Y)(X +Z) + (W +Y)(X-Z) (3.4.11)

to (3.4.10) yields:

R, (X.Y)- R (Z. W)

= - IA(X.Y)--Ar(Z.W) •I l(X)AI(X.Y)+ I(Z)Al(Z.W)

+ JA I I
+ A2((.Y)+AI(z.W) I(X)A(X.Y)- 4()Al(.W) )

I - 1 f ( (.)-F(XY ( 1(X) A (X. Y)+ (Z) A (Z. W)

pBut, from an additional use of (3.4.11)

Ol(X) A I(X. Y) - 0 1(Z ) A (Z. W)

SV 1. O()-lZ) -A(X Y)+AI(Z. W)
2 '

+" + (X) + .1(Z) A,(X, Y)- A I(Z, W)

Therefore, we conclude that

RI (X.Y) - RI (Z. W)

B, 2 F 2 k W)z. w- F2(x. Y)j (X)A(X.)Y)+4(Z)A(Z.W)]

U2

4 .t'* .. .. . . . . .. . . .. . . .. .. ... .. 5-.,+',-+ .. '.. .: .,': 9. .¢
- ' a -. 4 . 4 + * . l h bi
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+ 4 w I(x) - (z) A1(X.Y)+A M W) I ,
.N

+ IA T(X.Y) + A T(Z. I' F x ) W) 1 01 (X) +0 1 (Z) LB 2 (F2ZW 2( I) "

Applying the matrix 2-norm and then the triangle inequality on the last equation gives

IR, (X.Y) - R, (z.W)

<1 1 (X)A 1(XY)+$1 (Z)A 1 (Z.W)1 .IB 2 (F 2(ZW)-F 2(XY)) 2 +

2) 2 "(3.4.12a)

I A (X. Y) +A 1 (Z.W) I?
IA "v'Y)A ( ,,. ,,- • *2. 1 ,0(xm - DI(z) 12 + ..

4
I AI(X, Y) +A I(Z,-W)I12 -.l4D(X) + O(Z) z I B 2 ( F 2(Z W ) - F (X Y ) )  "

4 -

The corresponding inequality for the map R 2 (X. Y) is

I R 2 (X. Y) - R 2 (Z -W) 0

1< 2(Y)A(X ' Y)+ 2 (W)A 2(Z W)I 2 .IBI(Fi(Z.W)-FI(X.Y))I2 +

I ",X )+ ~ (3.4.12b) -

4)2( 2 . 2 (y) - 2 (W) 12 +

H A2(X. Y) + A 2(Z. W)12

In order to produce the conditions for which (3.4.6) holds in the region A=A B- X B1..

take

R A 1  j > 0, i E 11.2) (3.4.13)
e.

and show that for any and all positive-semidefinite symmetric R, with cr( 1 j) > _ > 0.

11R,(X.Y) - R(Z.W)112  6()' IIX -Z I + IIY -W 11 (3.4.14)

where (X.Y).(Z.W) E A. 0 < a(W,) < 1 . and -(6,) is yet to be determined. Then. the

contraction mapping argument will become obvious.

Therefore, some useful facts are stated. The proofs may be found in Appendix B. The

following result introduces the important variables v, and V2

U
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1r

Fact 3.2: Given any X. YE B and R, 1 Ei>O. then whenever ej < holds for
S I B i 2

all i E 11,21, 1I j(X ) - i(Y )12 4< IX - Y 2w herevi A e j~ ilB jl22 < I :

( y ,)2
%

Proof : See Appendix B

Fact 3.3 Given any (X.Y) E AAB-1B X B 12  and Ri I e 1>O. then whenever

0 < e < A 1 holds for all i E {1.21. it follows that

p(XY) = 1A(X.Y)1 2 < 1 + F2

1 + F2

P2(XY) = PA 2(XY)I 2  W R >-.2 1• ... ~ ~1 Fu 2 -.
'!

where TA e ISi IBi 12 and I A 02 !

Proof See Appendix B .1*

" Consider (3.4.12a) and (3.4.12b) where (X, Y), (Z. W) E A. Consequently. (3.4.12a) coupled

with Facts 3.1. 3.2. and 3.3 yields:

R R (X.Y) - R1 (Z.W) 1 2

1 IX 12 "lA(X.y)1 2 +fZ 12 A 1 (Z. W) 2  (F(Z )F(x+Y).....<1" 2 . B 2 _ F ,Z , W )_- F ,_X Y ) )d, +

( _W- )2
Ax -Z III +

4( 1 - j;-)2
_ _2 . 1IIX It. II Z 1 -1 I B-, ( F ,(Z . W ) - F 2(X .Y ) ) 112

_ --B,-IIB I(F , WF -(F(Z.W)-F2 (X .Y I + A 2 X , +

61 W IB 2 ( F(Z. W)-F(X.Y) )i1,

I!.

-U,,: :-. .- - ..., .:.: - -:"-:-". ",;-."" ".'-''-..:. . -2;': ""- ;.2% -? ; . ? 4 ; '; , ""., -:" ,
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(V

2 (3.4.15)
( 24'Wlj IB 2 (F 2 (ZW)-F 2 (X.Y))1 2 + 1 1Ix -Z 12 .

and (3.4.12b) becomes

I R 2 (X. Y) - R 2 (Z. W)
+ j 2 12 "(3.4.16)

2f-92 W2.1Bl(F(Z.W)-Fl(X.Y))I 2 + 1- '2 2 -W 12

Equations (3.4.15)-(3.4.16) are nearing the form of (3.4.14). The next result allows the

contraction mapping argument to be completed. The details of the proof may be found in

Appendix B.

Theorem 3.2 : Lipschitz Constants for the Feedbacks

Given(X.Y).(Z.W) E A.then

IIB,(F2 (Z.W)-F(X.Y))1 2 a 2 11X-Z 12 + a, 2 1Y-W II'

Iwhere 12 - and 022-"61 T2-1_2 !

Proof : See Appendix B

0

Making use of Theorem 3.2. (3.4.15) may be rewritten as.

1I R, (X. Y) - R, (Z, W ) 1k

-1 a- l " X --- + I - U. Z 2 + -2112W 1 +1 -W III

W-1a

2 W- .a.. + .... I -Zk + 2-- .. . 1 a.2.. '' -Will

4.
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A..

2 2 p, - )22 - + 2 I-)2 I -Z + 2 f2 9 1 92i ( WK 2 W I Y W 1
-~~ W~'iKj2 + 1j 2  *IT2'2 eI

2 
2 ( i 2  2WW2- + I() -Ix -Z (3.4.17a)

+ ii2 2- j)+ .*Y--W2o
T2

Likewise. (3.4.16) reduces to

ER2 (X.Y) - R2 (Z.,W)'2

J2 Fl W2-W1- )2 1i -X Z'2 (3.4.17b)

W (1-_N) 2

Finally. adding (3.4.17a) and (3.4.17b) yields the desired result.

A R, (X.Y) - R, (Z.W) 2 + IRZ (X. Y) - R2 (Z.W) R2

... 2 2I( (-)2 + 2 F- ( -)2 -x -z 2 +

~2 Fi-iW- -)2 + () 2  +2LLVi()2 iYWAf2 2 1( W + 2 - )2 W; .IIY - W 12

2a IX -Z 12 + f 2 a2 'IY -W 1

< f2 "-axaA.2 X -Z 11 + IIY- W 1  (3.4.18)

Clearly. (3.4.18) and (3.4.6) are of the same form with

-I
a = max Ia. 2 1 (3.4.19)

Moreover. 1 II A I can alwavs be chosen sufficiently small enough so that 0 a a < I . Hence. the

existence of a non-trivial region where coupled discrete-time Riccati equations behave as a

contraction mapping is established.

It is apparent that there are 3 parameters which govern the region where a contraction mapping
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occurs. These are EI, 42. and e. Before concluding this section. a procedure is developed for
determining those ranges of values for which a contraction mapping is guaranteed. Essentially. U

these quantities must be chosen small enough so that all the assumptions of the derivation remain

valid. To begin with. f is required to be smaller than some as yet to be determined. From 'V

(3.4.7) and Claim 3.1

p(X.Y) A IAj(X.Y)1 2 4 F < 1 (3.4.20)

But in view of Fact 3.3 and without loss of generality: .

-W, < 1 (3.4.21)

provided < .1n and 0 < = < ' 'T) 1.2. However, there is a moreI K2 I Bj2
restrictive condition imposed on by (3.4.19). That is

.< min i (3.4.22)

In fact. it is easily shown that mmin . - with equality if and only if
Lv/a~ 7C LKI K2

El = e = 0 . T define ___in and pick 6 such that < -

Now, a moment's reflection reveals that, in general, the 3 parameters El -2 . and cannot be

explicitly solved for. To see this, consider 6 which must be chosen smaller than . Well. is a

function of a, and a 2 which, in turn, are functions of 81 and 82 through (3.4.18). But. 8i is a

function of T", by (3.4.8) and (3.4.21) indicates that F, is a function of . Hence 6 is a nonlinear

function of itself. Similar arguments can be stated for El and 62 -

Therefore. the task at hand is to enumerate the cases where 6, , . and yield a contraction

mapping. The following algorithm accomplishes this task. ",

Contractim Mapping Surface Generator Algorithm p
Step I: For 7. i57 E (0. 1) but fixed do the following

U]
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Step 2: Compute Wj and W2 as defined in Fact 3.3.

Step3: Choosee =min 1J-,I2J "= ,1.

Step 4 : For e E (0, T), compute T (J) and- 2 ().

Step 5 : Compute a, and a 2 as defined in (3.4.18).

Step 6: If f < ain 1 then pick C and C to give W and F as fixed in Step 1.

Save the triple (j. 2. ) as a valid combination.

. Step 7: If not done then go to Step I else stop.

If this algorithm is implemented on a computer, then a list of possible maximal values can be

compiled. Actually. the roles of Fj and 92- are completely interchangeable insofar as the norms of

Q I and Q 2 are equal. Table 3.1 summarizes various maximal ranges of the 3 parameters.

For example, let IB 1 , = IB 2 I = IQIH2 = HQ2 112 = 1 Given any /RI and R 2 with

o(R ,). go(R,) > 0.400 -2.0833 and any A with = e(A) < 0.1 . then the corresponding
0.48-00

coupled discrete-time Riccati equation iterations will be a contraction mapping for all initial

conditions ( X,. Yo) where e(Xo) , U(Y0 ) K< 1.04. Note that if dynamic programming were used

to solve these equations. then the initial condition would be ( X(. Yo) = ( Q I. Q2) and hence the
• 

- ,

requirement that the initial conditions lie in a ball of radius 1.04 times the magnitude of Q is

automatically satisfied. Furthermore. the contraction mapping constant defined by (3.4.19) is

& < (0.1)2 - 28.0 = 0.28. Obviously, the requirement that U(A ) < 0.1 is a conservative one.

aw This is due. in part. to the large discretization increment of Table 3.1.

.'

3.4.3 A Numerical Example

In this subsection, we construct a numerical example that illustrates the contraction mapping

derived in the last subsection. Consider the system (2.1.1)-(2.1.2) with performance indices

S (2.1.3). Let C1 =C 2 =IL =S =S, 1 I. Then choose

U
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Table 3.1. Normalized* Maximal Ranges of Values for Which the Coupled Riccatis Are Contractions

4-y

VI P'2 a,__ 82 El 462 aI C12
0.10 0.10 0.70 2.53e+00 2.53e+00 0.0395 0.0395 1.83e+00 1.83e+00

0.10 0.20 0.60 2.17e+00 1.83e+00 0.0460 0.1093 2.24e+00 2.67e+00

0.10 0.30 0.50 1.82e+00 1.47e+00 0.0551 0.2035 2.71e+00 3.81e+00

0.10 0.40 0.40 1.52e+00 1.27e+00 0.0660 0.3160 3.24e+00 5.41t+00

0.10 0.50 0.30 1.29e+00 1.14e+00 0.0776 0.4397 3.84e+00 7.81e+00

0.10 0.60 0.20 1.13e+00 1.06e+00 0.0884 0.5671 4.52e+00 1.18e+01
0.10 0.70 0.20 1.15e+00 1.06e+00 0.0866 0.6608 5.24e+00 1.97e+01

0.10 0.80 0.10 1.04e+00 1.Ole+00 0.0962 0.7886 6.08e,00 4.10e+01

0.20 0.20 0.50 1.64e+00 1.64e+00 0.1219 0.1219 3.38e+00 3.38e+00 "

0.20 0.30 0.40 1.44e+00 1.35e+00 0.1388 0.2218 4.22e+00 4.99e+00

0.20 0.40 0.30 1.26e+00 1.18e+00 0.1583 0.3388 5.21e+00 7.31e+00
0.20 0.50 0.30 1.33e+00 1.19e+00 0.1500 0.4200 6.35e+00 1.09e+01

0.20 0.60 0.20 1.15e+00 1.08e+00 0.1736 0.5554 7.73e+00 1.68e+01

0.20 0.70 0.10 1.04e+00 1.02e+00 0.1922 0.6864 9.34e+00 2.86e+01

0.20 0.80 0.10 1.05e+00 1.02e+00 0.1908 0.7837 1.12e+01 6.02e+01
0.30 0.30 0.30 1.23e+00 1.23e+00 0.2449 0.2449 6.44e+00 6.44e+00

0.30 0.40 0.30 1.29e+00 1.24e+00 0.2317 0.3214 8.21e+O0 9.77e+00

0.30 0.50 0.20 1.14e+00 1.lOe+00 0.2626 0.4532 1.04e+01 1.50e+01

0.30 0.60 0.20 1.18e+00 1.1 le+00 0.2543 0.5397 1.31e+01 2.39e+01

0.30 0.70 0.10 1.05e+00 1.03e+00 0.2861 0.6810 1.64e+01 4.15e+01

0.30 0.80 0.10 1.06e+00 1.03e+00 0.2832 0.7766 2.04e+01 8.90e+01

0.40 0.40 0.20 1.13e+00 t.13e+0 0.3556 0.3556 1.29e+01 1.29e+01

0.40 0.50 0.20 1.16e+00 1.14e+00 0.3438 0.4388 1.69e+01 2.05e+01
0.40 0.60 0.10 1.05e+00 1.04e+00 0.3823 0.5796 2.22e+01 3.37e+01

0.40 0.70 0.10 1.06e+00 1.04e+00 0.3777 0.6735 2.91e+01 6.07e+01

0.50 0.50 0.10 1.04e+00 1.04e+00 0.4800 0.4800 2.80e+01 2.80e+01

0.50 0.60 0.10 1.06e+00 1.05e+00 0.4739 0.5724 3.83e+01 4.81e+01
0.50 0.70 010 1.07e+00 1.06e+00 0.4658 0.6627 5.27e+01 8.99e+01 q
0.60 [ 0.60 0.10 1.07e+00 1.07e+00 0.5625 0.5625 6.91e+01 6. 9 1c+01

• Assumes I Q 12 = Q2 2 = 1 = IIBIH2 = HB 2 112

0.4755 0.0459 -1.13e -4
A = 0.0459 0.345 -7.175e -5

-1.13e-4 -7.175e-5 0.25 .'.,

9.87e 2 1.37
B, = 1.23 and B, - -1.Oe-3

- 1.0le -31 1.Oe -5

The eigenvalues of A are 0.49. 0.33. and 0.25. Next. let R 1 = R2 = 11.0. From Table 3.1 it is

observed that this case falls within the region of contraction mapping. To illustrate the contraction

mapping behavior, this problem is run for 14 iterations uN.ing the L-A-S operators described in

% %

- ..,' o'- ,' C'o.. .... .....-. .. ,.--'- .... ''.. - t*'. )''-p- _ ,=" •
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IiChapter 4. A full listing of this run may be found in Appendix C. The important results are

summarized in Table 3.2. The values of K I and K 2 at the end of the iterations are

1.00233 1.76897e -2 -3.43357e -5

?:, K f  1.76897e-2 1.13453 -5.14615e -5
-3.43357e -5 -5.14615e -5 1.06667

1.00233 1.76895e -2 -3.43351e -5
K 2 = 1.76895e -2 1.13453 -5.14618e -5

-3.4335 le -5 -5.14618e -5 1.06667 C
Observe that the iterations converge rapidly. After 14 iterations. K (k) and K 2(k) are

changing by no more than 1.0e-13. Even more remarkable is the fact that a is almost constant

throughout the iterations. One final thing to note is that the predicted contraction mapping

constant is (0.5)2 3.38 - 0.845. while the observed constant is almost an order of magnitude less

than that. In general. this large difference occurs because the inequalities used in proving the

contraction mapping are not all tight simultaneously.

g Since the contraction mapping argument guarantees convergence to a unique fixed point and

the values of K, and K 2 are accurate to 1.0e-13. then we conclude that these values for K 1 and K 2

Table 3.2. Results of Contraction Mapping Iterations

Iteration # AK 1  AK 2  .
0 1.00000e+00 1.00000e-00 1.20666e-01
1 1.20666e-01 1.20666e-01 1.18329e-01
2 1.42782e-02 1.42782e-02 1.18053e-01
3 1.68558e-03 1.68558e-03 1.18020e-01
4 1.98932e-04 1.98933e-04 1.18016e-01
5 2.34772e-05 2.34773e-05 1.18016e-01
6 2 .7 7068e-06 2.77069e-06 1.18016e-01
7 3.26983e-07 3.26986e-07 1.18016e-01
8 3.85891e-08 3.85894e-08 1.18016e-01
9 4.55412e-09 4.55416e-09 1.18016e-01
10 5.37457e-10 5.37463e-10 1.18016e-01
11 6.34284e-11 6.34291e- 11 1.18016e-01
12 7.48554e-12 7.48565e-12 1. 18014e-01
13 8 .8 3404e-13 8.83404e-13 1.18020e-01
14 1.042 46e-13 1.04273e-13 1.18080e-01

*.

..................
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satisfy the Algebraic Riccati Equations (ARE) to 13 significant digits. Thus, for some cases, the

coupled Riccati iteration algorithm provides a method for obtaining the solution to two coupled

discrete-time AREs. This solution may also be the solution to the infinite-horizon LQ Nash game 4
problem.

:J,

,-"

- -

V .
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CHAPTER 4

L-A-S OPERATORS FOR SINGLE AND COUPLED DISCRETE-TIME RICCATI ITERATIONS

This chapter describes the L-A-S [32-36] operators created for the task of iterating single and

coupled discrete-time Riccati equations. There are a total of six new operators to the L-A-S

package. As presented in this chapter. they are SYST, LQ, DRE. GAME, LQNG, and MLTR. Single
F"

Riccati iterations are addressed first. Then the coupled (game) case is described. Operators SYST
I.

and DRE fall into the first category. while operators GAME. LQNG. and MLTR fall into the second

category. L-A-S operator LQ is used for both single and coupled Riccati iterations.

First. a brief description of the operator is given. Next. the corresponding excerpt from the

L-A-S Help-File is presented. Then a typical example of the usage of the operator is demonstrated.

4.1 L-A-S Operator SYST

The L-A-S operator named SYST is used to define a linear shift-invariant descriptor system.

Often, it is the first operator issued to the L-A-S interpreter when a linear quadratic regulator

- problem is being studied.

L -A -S Help -File Description

SYST - Descriptor SYSTem description
Syntax A. B. C [.D f. E]] (SYST)
Input Data A [N.N B [N,P] . C [M.N]

D [M.P] . E [N.N] (these last two arrays optional)
Options E. L. T
Description • Identifies the following discrete-time descriptor system

E x(k+l) A x(k) + B u(k)

y(k) C x(k) + D u (k)

Note If E is omitted, it is assumed to be the identity matrix.
If D is omitted, it is assumed to be a zero matrix.i

.ft d

U

t !.
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Exampl of Usage

An example of the usage of operator SYST is given below. The following segment is an L-A-S

program that identifies a discrete-time descriptor system.

: Descriptor System Identification
(inp)=a.b.c.d.e
a.b.c.d.e(out)-
a.b.c.d.e(syst)-

Notice that the program is completely generic in the sense that the dimensions of the matrices a. b, "'

c. d. and e are not specified. This is an important feature of the L-A-S language. The same program

can be run over and over again using different matrices (of different order) each time. If this -

program is executed for a simple second-order system, the following output would result.

>: Descriptor System Identification

> (inp)=a.b,c.d,e

*** Matrix a
Enter the dimensions of this matrix. >2,2 S ,

Matrix : a Enter C.D.E.I.N,P.RZ or H for Help. >R
ROW 1 >1.2
ROW 2 >3.4

*** Matrix b " P
Enter the dimensions of this matrix. >2.1 ",

Matrix: b Enter C,D.E.I.N.P.RZ or H for Help. >C *. '
COL I >1.0 .,

*** Matrix c
Enter the dimensions of this matrix. > 1.2

Matrix "c Enter C,D.E.I.N.P,R,Z or H for Help. > R
ROW I >0.1

Matrix d *

Enter the dimensions of this matrix. > 1.1 ,

Enter the scalar : d >0

*** Matrix e
Enter the dimensions of this matrix. > 2.2

Matrix " e Enter C.D.E.I.N.PR.Z or 1t for Help. >1

U •

. . - . .n

-,. .. -,
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> a.b.c,d.e(out)-

a
1.000 2.000
3.000 4.000

b
1.000
0.

c
0. 1.000

d
0.

e
1.000 0.
0. 1.000 4

> a.b.c.d.e(syst)=

The matrices d and e are optional as indicated in the Help-File description. However, if matrix e is

specified then matrix d must also be provided to serve as a placeholder. That is. a statement such

a.b.c..e(syst)=

is not permitted.

4R*

4.2 L-A--S Operator LQ 0

The L-A-S operator named LQ is used to define the weighting matrices in a discrete-time

system or game problem. Often. it is the second operator issued to the L-A-S interpreter when a

linear quadratic regulator or Nash game problem is being studied.

L -A -S Help -File Descriptim

LQ - Linear Quadratic weighting matrices for system or game theoretic problems

Syntax QI.RI [.Q2. R2] (LQ)=
Input Data QI [N.N] , RI [PI.Pi] . Q2 [N.N] . R2 [P2.P2]

(These last two arrays only required for game)
Options E. L. T
Description Identifies the weighting matrices in a linear-quadratic discrete-time

* system or game problem

%..
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Exampl of Usage

An example of the usage of operator LQ is given below. Consider the discrete-time system

defined in Section 4.1. The following segment is an L-A-S program that identifies the same system

and then defines two weighting matrices in preparation for the study of a linear quadratic regulator

problem. Rather than inputting the matrices from the keyboard. the RDF (Read Data File)

operator is used.

* Linear Quadratic Regulator Problem
System and Weighting Matrix Identification

System Definition
(rdf)-a.b.c
a.b.c(out)-
a.b.c(syst)=

Weighting Matrices Definition
(rdf)=q.r
q.r(out)="
q.r(lq)-

If this program is run using the second-order system of Section 4.1. the following output results.

>: Linear Quadratic Regulator Problem

>: System and Weighting Matrix Identification

>: System Definition

> (rdf)=a.b.c

Enter name of the Data File (DF) for matrix a >syst
Opening file named : syst.DF
Reading array named a
Reading array named b
Reading array named c

> a.b.c(out)=

a
1.000 2.000
3.000 4.000

7-

b

0.X
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C
0. 1.000

> a~b.c(syst)-

>: Weighting Matrices Definition

> (rdf )-q.rt

Enter name of the Data File (DF) for matrix q > lq
Opening file named: lq.DF
Reading array named: q
Reading array named :r

q
1.000 0.
0. 2.000

r
1.000V

N~ >q.r(lq)=

4.3 L-A-S Operator DRE

The L-A-S operator named DRE is used to iterate a single discrete-time Riccati equation.

L -A -S Help -File Description

DRE - Discrete-time Riccati Equation iteration
Syntax :K (DRE) = KNEW
Input Data :K [N,N]
Output Data: KNEW [N,NI

*Options E, LT
Description :Assuming that operators SYST and LQ have been issued.

this operator performs one iteration of the discrete-time
Riccati equation defined by

ErTKNEW E =A ( K -T r *)A +Q

where r = R + Br K B. and 4 = Mr-1 BrT K .
*A , B, and E are identified by the SYST operator. Q and R are

identified by the LQ operator.



-a. 77a -1** * . . -- j -.. 7%7.

70

Exwna of Usage

An example of the usage of operator DRE is given below. Consider the discrete-time system

defined in Section 4.1. The following segment is an L-A-S program that identifies the same system

and then defines two weighting matrices in preparation for the study of a linear quadratic regulator

problem. Rather than inputting the matrices from the keyboard. the RDF (Read Data File)

operator is used. Since the matrix E is equal to the identity for this problem. the terminal

constraint (2.1.14) reduces to K f Q which is performed in step 13 below.

1 :Linear Quadratic Regulator Problem
2:
3 :System and Weighting Matrix Identification
4 : - System Definition --
5 (rdf)=a.b.c
6 a.b.c(out)=
7 a.b.c(syst)=
8 Weighting Matrices Definition ---
9 (rdf)=q,r
10 q.r(out)=
11 q.r(lq)=
12 :Initialization
13 q(mcp)=k
14 l(dsc)=one
15 :
16 "Enter the total number of iterations to perform. (A scalar)"
17 (inp)=num

19: Main Loop
20 Z:k(out)=
21 k(dre)-knew
22 knew(mcp)-k
23 num.one(-)-num
24 num(if)=Z
25 •
26 " Done. Print out final k.
27 k(out)=
28 (stop)= .A

If this program is run for five iterations using the second-order system of Section 4. 1. the following

output results.

> :Linear Quadratic Regulator Problem

> :Svstem and Weighting Matrix Identification

U
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>; -- System Definition -

> (rdf)-a.b.c

Enter name of the Data File (DF) for matrix a >syst
Opening file named : syst.DF
Reading array named : a
Reading array named : b
Reading array named : c

> a,bc(out)-

a
1.000 2.000
3.000 4.000

.4 b
1.000
0.

0. 1.000

> a.b.c(syst)=

>: -- Weighting Matrices Definition--

> (rdff)=q.r

Enter name of the Data File (DF) for matrix q > lq
Opening file named: Iq.DF
Reading array named q
Reading array named: r

>q.r(out)=

N q
1.000 0.
0. 2.000

r

1.000

> q,r(lq)=

4 > :Initialization

>q(mcp)=k

> 1(dsc )=one

a-

.4A
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>"Enter the total number of iterations to perform. (A scalar)*

Enter the total number of iterations to perform. (A scalar)

> (inp)-num

*** Matrix num *

Enter the dimensions of this matrix. > 1.1

Enter the scalar: num >5

>; Main Loop -

> Z:k(out)-

k
1.000 0. U
0. 2.000

> k(dre)=knew

> knew(mcp)=k

> num.one(-)fnum

>num(if)=Z -.
;-r

> Z:k(out)=

k
19.500 25.000
25.000 36.000

> k(dre)=knew

> knew(mcp)=k

> num.one(-)=num

> num(if)=Z

>Z:k(out)= .5

k
58.878 80.244
80.244 113.512

mI.

> k(dre)=knew

> knew(mcp)=k

i
."9
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> num.one(-)=num

> num(if)=Z

> Z:k(out)=

kIl
63.804 87.075

*87.075 122.984

> k(dre)=knew

> knew(mcp)'k

> num.one(-)-=num

> num(if)=Z

> Z:k(out)=

k

A 63.918 87.234
87.234 123.208

> k(dre)=knew

> knew(mcp)=sk

> num.one(-)=num

>num(if)=Z

.5'0

>: Done. Print out final k. %

1.'.> >k(out)=

k
.5. 63.922 87.240 1

87.240 123.216

> (stop)-

Notice the speed with which the Riccati iterations converge. The value of k is settled to three -

sgnificant digits in only five iterations.

.4Id
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', 4.4 L-A-S Operator GAME

The L-A-S operator named GAME is used to define a linear shift-invariant descriptor game.

Often, it is the first operator issued to the L-A-S interpreter when a linear quadratic descriptor

Nash game problem is being studied.

L -A -S Help -File Description

GAME - 2-player GAME description
Syntax • A. B1. B2. Cl. C2 [.E ] (GAME) =
Input Data A [N,N] . Bl [N.Pl] , B2 [N.P2]

C1 [M1.N] . C2 [M2,N] , E [N.N]
Matrix E is optional.

Options E, L. T
Description Identifies the following discrete-time game:

E x(k+l) = A x(k) + BIu (k) + B 2 u 2(k)

Y A) CI x(k)

y 2(k) = C 2 x(k)

Note If E is omitted, it is assumed to be the identity matrix.

Fxwmnple of Usage

An example of the usage of operator GAME is given below. The following L-A-S program

segment identifies a discrete-time descriptor game.

Descriptor Game Identification
(rdf)=a.bl.b2.cl.c2
a.bI .b2.cl ,c2(out)=
a.bI ,b2.cl .c2(game)=

If this program is executed for a third-order game problem. the following output would result.

>: Descriptor Game Identification

> (rdf)=a.bl .b2.cl .c2

Enter name of the Data File (DF) for matrix a >ab
Opening file named : ab.DF
Reading array named " a
Reading array named " bl
Reading array named b2

i
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Enter name of the Data File (DF) for matrix ci >cc
Opening file named: cc.DF
Reading array named : c I
Reading array named: c2

>a.b1.b2.c1.c2(out)-

a
0.435 -1.401 -0.896

-0.172 -0.569 1.391
-1.655 0.008 0.134

bi
1.000 2.000
3.000 4.000
5.000 6.000

b2
1.000
1.000

U 0.

c 1
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

c2
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

> a.b l~b2,c l.c2(game)=

4.5 L-A-S Operator LQNG

The L-A-S operator named LQNG is used to iterate two coupled discrete-time Riccati

equations.

L -A -S Help -File Descripioi

LQNG - Linear Quadratic Nash Game (Coupled Riccati Iterations)
VSyntax K 1. K2 (LQNG)= K IN. K2N [ II[. F21]I

Input Data K I [N.N] . K2 [N.NI
Output Data KIN [N.N] . K2N [N.NI , Fl [P1.Nj . F2 [P2.NI

Arrays Fl and F2 are optional.
Options E. L. T
Description Assuming that operators GAME and I.Q have been issued.

this operator performs one iteration of two coupled
discrete-time Riccati equations. K IN and K2N are the

1,7
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new Riccati gain matrices. Fl and F2 (if provided)
are the corresponding feedback matrices.

Ewonple of Usage

An example of the usage of operator LQNG is given below. Consider the discrete-time game

defined in Section 4.4. The following segment is an L-A-S program that identifies the same system

and then defines two weighting matrices in preparation for the study of a linear quadratic Nash

game. Rather than inputting the matrices from the keyboard. the RDF (Read Data File) operator is

used. Since the matrix E is equal to the identity for this problem, the terminal constraint (2.1.14)

reduces to Ki - Q1 which is performed in step 10 below.

1 : Linear Quadratic Nash Game
2 (rdf)=a.bl.b2.c1,c2
3 abl.b2.cl.c2(out)=
4 a.bl.b2,clc2(game)=
5 (rdf)=rl.r2.sl.s2
6 rl.r2,sls2(out)=
7 c I (t).sl (*).c I (*)=qlI
8 c2(t).s2(*).c2(*)=q2
9 qlrl.q2.r2(lq)=
10 ql.q2(mcp)=kl.k2

12 1(dsc)=one
13 "Enter the total number of stages in this game."
14 (inp)=ii
15 : Main Loop
16 a:kl.k2(out)=
17 kl,k2(lqng)=klnk2n
18 kln.k2n(out)=
19 kln.k2n(mcp)-kl.k2
20 ii.one(-)=ii ,
21 ii(if)=a

If this program is run for five iterations using the third-order system of Section 4.4, the following

output results. -

>. Linear Quadratic Nash Game

>(rdf)=a.bl ,b2,c1 .c2

Enter name of the Data File (DF) for matrix a >ab
Opening file named : ab.DF
Reading array named a
Reading array named hI

. • . . ...- ....~~.-.--....-.--......-..........-..... ... ... ..
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Reading array named: b2

Enter name of the Data File (DF) for matrix cI >cc
Opening file named : cc.DF
Reading array named : c1
Reading array named : c2

> a.bl .b2.c1 .c2(out)f
PV4

a
0.435 -1.401 -0.896
-0.172 -0.569 1.391
-1.655 0.008 0.134

bl
1.000 2.000
3.000 4.000
5.000 6.000

b2
1.000
1.000
0.

ci
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

c2
1.000 0. 0.

- 0. 1.000 0.
. 0. 0. 1.000

> a.bl .b2.cI .c2(game)=

>(rdf)=rl.r2.sl.s2

Enter name of the Data File (DF) for matrix rI >rs '.
Opening file named : rs.DF
Reading array named: rl
Reading array named " r2
Reading array named " sl
Reading array named: s2

> rl .r2.sl .s2(out)=

ri
1.000 0.
0. 1.000

r2
I~. 1.000

UI
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sl
1.000 0. 0. n
0. 1.000 0.
0. 0. 1.000

s2
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000 ,.

> c l(t).sl (*).c 1(*)=q 1
# 1.s1(*).c1(*) ql
#2,cl(*)=ql

> c2(t).s2(*).c2(*)-q2
#1 s2(*),c2(*)-q2
#2.c2(*)=q2

> q1 ,rl .q2,r2(lq)=

> q 1 .q2(mcp)=k 1 .k2

>;"

> 1 (dsc)=one

>Et t
>"Enter the total number of stages in this game.

Enter the total number of stages in this game. Z !

> (inp)=ii

*** Matrix ii **

Enter the dimensions of this matrix. > 1.1

Enter the scalar ii >5

>" Main Loop

>a:kl .k2(out)=

k1
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

k2
1.000 0. 0.
0. 1.000 0.
0. 0. 1.0O

> k l.k2(lqng)=k 1 n.k2n

% "
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> kln,k2n(out)=

kln
1.236 -0.229 0.003

-0.229 1.569 0.817
0.003 0.817 3.291

k2n
1.393 -0.432 0.090

-0.432 1.771 0.709
0.090 0.709 3.235

> kln.k2n(mcp)=klk2

> ii.one(-)fii

:: > ii( if ) a,,

> a:k 1.k2(out)--

k,126-0.229 0.003 :: -0.229 1.569 0.817
"" 0.003 0.817 3.291 ,

1.393 -0.432 0.090
-0.432 1.771 0.709
0.090 0.709 3.235

> k 1.k2(lqng)=kln.k2n

>kln.k2n(out)=

kln
1.242 -0.238 -0.009

-0.238 1.715 1.192
-0.009 1.192 4.282

k2n
1.402 -0.418 0.159

-0.418 1.971 1.302
0.159 1.302 5.081
> k I n.k2n(mcp)=k1 .k2

> ii.one(-)=ii

> ii( if)=a

>a:kl .k2(out)= 
V-

k I
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1.242 -0.238 -0.009
-0.238 1.715 1.192
-0.009 1.192 4.282

k2
1.402 -0.418 0.159

-0.418 1.971 1.302
0.159 1.302 5.081

> k 1.k2(lqng)-kln,k2 n

> kln.k2n(out)=

kln
1.247 -0.238 0.007

-0.238 1.710 1.181
0.007 1.181 4.304

k2n
1.403 -0.416 0.168 b

-0.416 1.977 1.321
0.168 1.321 5.155

> k 1 nk2n(mcp)-k 1,k2

> ii.one(-)=ii

> ii(if)=a

> a:k I .k2(out)=

k I
1.247 -0.238 0.007

-0.238 1.710 1.181
0.007 1.181 4.304

k2
1.403 -0.416 0.168

-0.416 1.977 1.321
0.168 1.321 5.155

> k I.k2(lqng)=k 1 n.k2n

> k 1 n,k2n(out)=

kIn
1.247 -0.238 0.006

-0.238 1.714 1.192
0.006 1.192 4.330

k2n
1.403 -0.416 0.169

-0.416 1.976 1.320

I
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0.169 1.320 5.155

>k1n.k2n(mcp)=kl.k2

> ii.one(-)=ii

> iiif)-a

>a:klk2(out)-

k1
1.247 -0.238 0.006

-0.238 1.714 1.192
0.006 1.192 4.330

k2
1.403 -0.416 0.169

-0.416 1.976 1.320
0.169 1.320 5.155

>kl .k2(lqng)=kln,k2n

> kln.k2n(out)=

kin
1.247 -0.238 0.006

-0.238 1.714 1.192
0.006 1.192 4.330

k2n

1.403 -0.416 0.169
-0.416 1.976 1.320

, 0.169 1.320 5.156

> k 1 n.k2n(mcp)=k1 .k2

>ii.one(-)=ii

>ii(if)=a 
%

4.6 L-A-S Operator MLTR

The L-A-S operator named MLTR is used to iterate two coupled discrete-time Riccati

equations where multirates are involved.

t L -A -S Help -File Description

MLTR - MulTiRate nash game (Multirate Coupled Riccati Iterations)
Syntax K1.K2. K N (MLTR)-KIN. K2N [.F1 [.F2]]
Input Data KI [N.N] . K2 [N.N . K [1.1] . N[1.1]

"0%,'" " ..."-":".'.,"£-'')¢2","..V;¢i.'&2,'.' ",'tg,",' ¢, ', ' V ' '2 -.' .", '"* ?' ' ?: '' '"" ; " " : ' -I'" " l "".
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Output Data: KIN [N.N] .K2N [N.N] . F1 [PIN] . F2 [P2.N]
Arrays F1 and F2 are optional.

Options " E.L. T
Description " Assuming that operators GAME and LQ have been issued.

this operator performs one iteration of two coupled
discrete-time Riccati equations where multirates
are involved. K is the current time instant and
N is the multirate parameter. KIN and K2N are the
new Riccati gain matrices. F1 and F2 (if provided)
are the corresponding feedback matrices..1

Exampl of Usage

An example of the usage of operator MLTR is given below. Consider a third-order discrete-

time system that is being controlled by two computers operating at different speeds. The

computers are decentralized in that they are located at different physical places. They control the -aa

plant through a telephone hookup. DM1 is equipped with a 1200 baud modem, but DM2 has only

a 300 baud modem. Thus, N = 4 for this problem. Because of the interface between the plant and

the controllers, the input of DM2 is the all-digital control policy (2.2.3). The following L-A-S

program is used to study this multirate game.

I : Linear Quadratic Multirate Nash Game
2 (rdf)=a.bl.b2.cl.c2
3 a.bl.b2.cic2(out)=
4 a.bl.b2.cl.c2(game)=
5 (rdf)=sl.rl.s2.r2
6 cl(t).sl(*).cl(*)=ql
7 c2(t).s2(*).c2(*)=q2
8 ql.rl.q2.r2(out)=

9 ql.rl.q2.r2(lq)=
10
11 q l.q2(mcp)=k 1.k2
12 1 (dsc)=one
13 "Enter the total number of stages in this game"
14 (inp)=ii
15 "Enter the multirate parameter. N" -
16 (inp)=N
17 : Main Loop ..
18 a:k 1.k2(out)=
19 ki ,k2.ii.N(mltr)=k I n.k2n.f 1 .f2
2(0 fi .f2(out.e)=
21 k I n.k2n(mcp)=kl.k2
22 ii.one(-)=ii

23 ii(if)=a
24"

25 k I.k2.ii.N(mltr)=k I n.k2n.1 .f2

Ul
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26 f 1,2(out.e)-

If this program is run for six iterations using an arbitrary third-order system, the following output

results.

>; Linear Quadratic Multirate Nash Game

> (rdf)-a~bi .b2.cl .c2

Enter name of the Data File (DF) for matrix a > ACCI
Opening file named: ACC1.DF

CReading array named a
Reading array named bl

4 Reading array named: b2
Reading array named: cl
Reading array named :c2 

p

> a.bI .b2 .cl1 c2(out)=

a
0.435 -1.401 -0.896
-0.172 -0.569 1.391
-1.655 0.008 0.134

* 0.
* 1.000

* b2
1.000
1.000
0.

cl
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

c2

1.000 0. 0.
0. 1.000 0.

0. 0. 1.000 
p

> a.bl .b2.cl .c2(game)=

> (rdf )=sl .rl .s2.r2

Enter name of the Data File (DF) for matrix s I > ACC2
Opening file named: ACC2.DF
Reading array named: s I

V~~~~~~~e 
e 

V ..- * ._V-....
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Readig aray naed r
Reading array named s2r
Reading array named : r2

> cl1(t).sl1(*).clI(*)=ql1
# 1.s I(*),c 1(*)-q 1
#2.clI(*)-q 1

> c2(t).s2(*).c2(*)=q2
#1 s2(*).c2(*)-q2

#2.c2(*)=q2

>ql.rq2.r2(out)-

q I
1.000 0. 0.

*0. 1.000 0.
0. 0. 1.000

ri
1.000

q2
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

r2
1.000

> q I rl .q2.r2(lq)=

> :

>ql .q2(mcp)=kl .k2

> 1(dsc)=one

>"Ener he ttalnumer o stgesin tis ame

Enter the total number of stages in this game

> (inp)=ii

d ~ Matrix ii *

E -nter the dimensions of this matrix. > 1. 1

Enter the scalar : ii >6

>"Enter the multirate parameter. N"

Enter the multirate parameter, N

S.a
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> (inp)-N

Matrix N
Enter the dimensions of this matrix. > 1.1

Enter the scalar : N >4 

>; Main Loop

>a:kl.k2(out)=

k I
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

k2
1.000 0. 0.

0. 1.000 0.
0. 0. 1.000

> k 1,k2,iiN(m ltr)=k I n.k2n .f1 .f2

> f If2(out.e)=

f 1
- -4 .06588e-01 - 4 .64582e-01 -2.54176e-01

0.oooooe+00 o.oooooe+00 0.00000e+00

>kln.k2n(mcp)=kl.k2

> ii~one(-)=ii

> ii(if)=a

> a:k 1 .k2(out)=

kI
3.461 -1.091 -1.160

* -1.091 2.640 0.112
-1.160 0.112 3.562

k2e.
3.295 -1.280 -1.264

-1.280 2.424 -0.006
-1.264 -0.X)6 3.497

> k 1 ,k2.ii.N(mltr)=k I n.k2n.f I .f2

> f I .f2(out.e)= 
S.

Lua

U%
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fl
-4 .91982e-01 - 4 .6 4 462e-01 -5. 4 4093e-01

f2
O.0000e+00 O.Oe+00 O.O0000e+O0

>kln.k2n(mcp)=kl .k2

> iione(-)=ii

> ii(if)=a

> a:kl .k2(out)=

kl
12.002 -5.782 -7.172
-5.782 5.706 2.611
-7.172 2.611 10.304

k2
11.760 -6.010 -7.441
-6.010 5.214 2.712
-7.441 2.712 9.552

> kl .k2.iiN(mltr)=k 1 n.k2n.f l .f2

> f I .f2(oute)= "

f I
-6 .2 8113e-01 - 3 .24123e-01 - 7 .37706e-01

f2
1.8 6 46 2e+00 -1.22783e+00 -1.03105e+00

> kln.k2n(mcp)=kl .k2

> ii.one(-)=ii

> ii(if)-a

>a:kl .k2(out)=

k I
23.862 -8.100 -23.483
-8.100 4.268 9.051

-23.483 9.051 27.654

k2
23.198 -9.483 -21.761 10.
-9.483 5.342 8.857

-21.761 8.857 23.593

> k 1 .k2.ii.N(mltr)=k 1 n,k2nf 1f2

7 U
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> f l.f2(out.e)=

fl
-1.24307e+00 -1.87479e-01 2. 7 7446e-01

f2
o.oooooe+00 o.oooooe+o0 0.oooooe+00

>kln.k2n(mcp)-kl.k2

> ii.one(-)-ii

> ii(if)=a

> a:kl.k2(out)=

I~.S.
112.932 -61.747 -77.912 S
-61.747 36.568 42.550
-77.912 42.550 57.697

k2
107.254 -57.781 -79.740
-57.781 33.065 42.170
-79.740 42.170 63.870

>kl .k2.ii.N(mltr)=kln.k2n.f 1 .f2

> f1 .f2(out.e)=

f I
3.28894e+00 -2.42437e+00 - 3 .84678e+00

f2
0.O0000e+00 0.O0000e+00 O.O0000e+00

> kln.k2n(mcp)=kl .k2

"'. > ii,one(-)ffiii

> ii(if)=a

I: >a:kl.k2(out)=

k I
';4 1.56022e+02 -8.05226e+01 -1.31445e+02

-8.05226e+01 4.46216e+01 6.68516e+01
-1.31445e+02 6.68516e+01 1.18129e+02

k2
2.01401e+02 -1.03781e+02 -1.59092e+02
-1.03781e+02 5.55282e+01 8 .09325e+01
-1.59092e+02 8.09325e+01 1.30365e+02
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'h.

> k 1,k2.ii.N(mltr)=k I nk2n.f 1 f2

> ft .f2(out.e)n

fl
2.86026e+oo -2.18331e+oo -3.49269e+00

f2
0.00000e+00 0.00000e+O0 0.00000e+O0

> kln.k2n(mcp)=kl,k2 -

> iione(-)=ii

> ii(if)=a

> kl,k2,ii.N(mltr)=kln.k2n.f2 .f2

> f l,f2(out.e)=

fl
-4 .3 57 03e-01 - 4 .13821e-01 -9.23808e-01

f2
3 .93805e+00 -2 .10267e+O0 -3.12784e+00

-

'C ~ ~ ... . - . . . . . .. C - -%-,
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CHAPTER 5

CONCLUSIONS

This dissertation studies the computational aspects of iterating two coupled discrete-time

Riccati equations. These equations arise as a result of solving LQ descriptor Nash games. The

presence of coupling in the Riccati equations complicates the iteration process. This work devises a

method which removes the coupling in a numerically robust manner. Then algorithms are

engineered that compute the quantities needed to iterate the Riccati equations. Every opportunity

is taken to exploit the properties of matrices (e.g., positive-definiteness) that enter into the

calculations so as to obtain a savings in computation. The algorithms are coded and the coupled

Riccati software is integrated into the L-A-S CACSD language. The novelty of this work is two-

fold. First, a new problem is formulated, solved and the solution procedure is implemented as

*. computer code. Second. numerical theory and software are combined under the heading of CACSD

to yield a package that allows others Lo solve single and coupled Riccati equations.

The numerical issues associated with iterating coupled discrete-time Riccati equations are the

key focus of this thesis. The software developed for the iteration task is coded in FORTRAN and

makes extensive use of the LINPACK library. A structured programming approach has produced

low-level algorithms that are very modular and extremely efficient. The final result is a set of six

new L-A-S operators that are collectively capable of iterating single and coupled discrete-time

Riccati equations.

Although the main contribution of this thesis is the software engineering of the coupled

Riccati problem. there are several theoretical advancements which add breadth to the work. The

- most important of these are the existence and convergence theorems which define the iteration

behavior for both finite-horizon and infinite-horizon problems. Of less relevance but not

o.Qwf
significance is the development of descriptor-variable dynamic games. In addition to theoretical

extensions, there are physical and numerical advantages associated with descriptor game

formulations. Multirate I.Q Nash games were heretofore unposed.

%4 -%-Dl
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a.

There are several directions for future research. For example, the assumption that E is

nonsingular could be relaxed. Then uniqueness of the Riccati iterates is lost. Less restrictive

conditions insuring convergence for infinite-horizon problems could be sought. A contraction

mapping argument could be attempted for the case of unstable plants. Lyapunov-type stability

IS

be the determination of Leader-Follower strategies for descriptor games.

-.: .

',
°
.

.l

.5.
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APPENDIX A

SOFT'WARE LISTINGS

This appendix contains the FORTRAN computer codes used for a selected number of the low-

level, coupled Riccati algorithms. In alphabetical order, the algorithms are MLTPLY. PSICOM and

QDFORM.

Algorithm MLTPLY

C M* L PL

C 8*Given the double precision matrices A and B, this subroutine
C **computes and returns the variable C defined as the product

C C A *B , f the logical variable ATFLAG is False or t,

C TS c'= A *B. if the logical variable ATFLAG is True-
C * f

C *8where A is an NxM arbitrary matrix (for ATFLAG - False).
:1 C is an MxN arbitrary matrix (for ATFLAG - True). lf

C **B is an MxP arbitrary matrix.
C ** and C is the resulting NxP matrix.

C SUBROUTINE MLTPLY (A.B.C.N.M.P.ATFLAG)

DOUBLE PRECISION A (1) .B (1) .C (1)
0INTEGER N .M .P

LOGICAL ATFLAG

INTEGER I1.11 , 12 .13 J K
2. C 8

C 88Branch depending on the value of ATFLAG.

C 8IF (ATFLAG) GO TO 2

C *8Compute A * B and store in C.

DO I J=l.P
13 = (JlI)*N IftI

DO I l=I.N

12 1 (-)*NJ
13 = 13 + I
C (13) = 0.0)

.e? lie,
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C **
DO 1 K-l.M
11 -I1 + N
12 12 + 1
C (13) f C (13) + A (11) * B (12)
CONT I NUE
RETURN

C **
C ** T a
C ** Compute A * B and store in C.
C **
2 CONTINUE

DO 3 Ji1.P
13 = (J-1)*N
DO 3 I=1.N
I Ifi (I-1)*M
12 = (J-1)*M

13 - 13 +1
C (13) - 0.o

C **
DO 3 K-I.M
I1 =I1 +1
12 = 12 + 'N
C (13) = C (13) + A (I1) * B (12)

3 CONT I NUE

RETURN

END

I.
o

°%

23
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Algorithm PSICOM

C
N C ** PSICOM **

C s

C **

C * Given B. KK and R. this subroutine computes and returns
C the variable named PSI defined as

'" **

C ** -1 T
C ** PSI = GAMA *B KK

C ** T
C ** where GAMlA - R + B *KK * B
C ** B is a NxP matrix,
C ** KK is a NxN. positive-semidefinite matrix.
C ** and R is a PxP. positive matrix.C **
C
C ** Note : It is assumed that P is less than or equal to N!

**
C
C ** Several other quantities are calculated and returned for
C ** possible later use. These quantities include
C ** T
C ** W - B * KK GAMVIA XK. and XG where XG is the Cholesky

C ** T

C ** factor of GAMA. That is. GAMVIA -XG * XG.
C ** Likewise XK is the Cholesky factor of KK.
C *

SUBROUTINE PSICOM (B,GAlMA.KK.R.W.XG.XK,N.P,PSI)
C **
C ** GAMMA contains enough room for I double precision PxP matrix.
C ** W contains enough room for 1 double precision NxN matrix.
C ** XG contains enough room for 1 double precision PxP matrix.

"N C * XK contains enough room for 1 double precision NxN matrix.
C

DOUBLE PRECISION B (1) GAM%4 (1) KK (1) R (1)
DOUBLE PRECISION W (1) XG (1) XK (1) PSI (1)

INTEGER N P
"" **

INTEGER I , 1 I, J K L USER

C
DATA USER /6/

C * *

C ** T
C ** Compute B * KK and store in W using algorithm XILTPLY.

CALL MLTPLY (B.KKW.P.N.N..TRUIK)
C **T
C *Compute GAI - R + B * KK * B using algorithm QDFORN.,

C * Note "Since XG is only computed later, it is used here as a

,
*1 h
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C *8duniny variable for temporary storage by QDFORM.
C **Also. CHOFLG - False, CFLAG - True. and ADDFLG -True.

CALL QDFORM (KK.B.R.GAMA.XK.XG.N.P. .FALSE. ..TRUE.. TRUE.) '

C *8T

88 Factor GANMA = XG *XG where XG is upper triangular.
C 8

K =P *P
DO 3 I=I.K
XG (I) - GANMA I)

3 CONTINUE
C *

CALL DPOFA (XG.PP.I)
IF (I .EQ. 0) GO TO 5
MRITE (UsER.4)

4 FORMAT (W ERROR :PSICCM% - GANMA is not positive definite!*)
RETURN

C *

C *8Compute PSI by solving the set of linear equations
C 8*T

C 8 GANMA* PSI =B *K =W.

C 8

*5 CONTINUE
11 = -P
DO 7 J=I.N

C *8Copy ith column of W to ith column of PSI.

L=1
DO 6 K=I.P
L = L+ I
PSI (L) =W (L)

6 CONTINUE
* C 8*Compute Jth column of PSI.

CALL DPOSL (XG.P.P.PSI(Il+l))
*7 CONT INUE

RETURN
E ND
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Algorithm QDFORM

ICC ~*sssss,**************
C ** QDFORM **
C $******S***$,*s****s~s~is

C **
C ** Given A. B and optionally C. this subroutine computes and
C returns one of the following quadratic forms

C TC "* D - B *A*B

C **

C ** T
C * D - C + B A B
C **

C ** T
C ** D C - B *A *B
C **
C ** where A is a NxN. (positive-definite) mat.,x,
C ** B is a NxP arbitrary matrix.
C * and C is a PxP symmetric matrix.
C **
C ** It is assumed that P is less than or equal to N!i C **

SUBROUTINE QDFORM (A.B .C.D.X.Y.N.P .CHOFLG.CFLAG.ADDFLG)
C **
C ** Note that the arrays X and Y must be provided by the calling
C ** routine as temporary storage for the calculation. Each
C * must contain enough room for I double precision NxN matrix.
C *

C ** This routine has three flags which govern the calculation of a
C quadratic form.
C ** If CHOFLG is True, then the Cholesky factor of A is alreadyI C ** available and has been passed in X. Consequently. the call
C ** to LINPACK routine DPOFA is skipped. If CHOFLG is False.
C ** then the Cholesky factor of A is assumed to be unavailable.

C ** If CFLAG is True. then the matrix C is to be included in the
C ** initialization statement of the matrix multiply DO-Loop.
C ** If CFLAG is False. then C is never referenced.
C **
C ** Assuming CFLAG = True. then ADDFLG is consulted to determine
C ** if an addition or subtraction is to be performed in the
C ** matrix multiply DO-Loop. ADDFLG = True means
C ** T
C ** C B * A * B is computed. ADDFLG = False means
C ** T
C ** C - B * A * B is computed. If CFLAG = False. then
C ** ADDFLG is never referenced.
C

I)UBLE PRECISION A (1) B (1) C (1) D (1)

I 4
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DOUBLE PRECISION 
X (1) Y (1)

INTEGER N P
LOGICAL CHOFLG CFLAG ADDFLG

C **

INTEGER I 1 12 13 14 , J K USER

DATA USER /6/

C **

C ** Skip the Cholesky factorization of A if already available.
C **

IF (CHOFLG) GO TO 3
C **
C ** T
C ** Factor A - X * X where X is upper triangular.
C **

K - N N
DO 1 I=1.K -

X () A (1)
I CONTINUE
C **

CALL DPOFA (X.N.N.I)
IF (I .EQ. 0) GO TO 3
WRITE (USER.2)

2 FORMAT (/ ERROR : QDFORM - Array is not positive definite!*)
RETURN

C **B.
C ** Compute X * B and store in Y taking advantage of the fact
C ** that X is upper triangular.
3 CONINUE

DO 4 I=1.N
DO 4 J=1.P p
13 - (J-I)*N + I p.
Y (13) - 0.0
DO 4 K=I.N
11 - (K-1)*N + I
12 = (J-1)*N + K
Y (13) f Y (13) + X (11) * B (12)

4 CONT I NUE
C ** C

C ** Branch if matrix C is referenced.
C **

IF (CFLAG) GO TO 7
C **
CT * * T .

C ** Compute Y * Y and store in 1) taking advantage of the
C ** synmetry of D.
C **

Do) 6 I=I.P j
D() 6 J=I.P
11 = (I-1)*N
12 = (J-1)*N
13 = (J-1)*P + I

-. ,
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D (13) - 0.0

DO 5 K-I.N
D (13) - D (13) + Y (I1+K) * Y (12+K)

- CONTINUE
14 - (l-1)*P + .
D (14) D (13)

6 CONTINUE
RETURN

C **
C * Branch depending on the value of ADDFLG.
C **

7 CONTINUE
IF (ADDFLG) GO TO 10

C *
C ** T
C 8* Compute C - Y * Y and store in D taking advantage of
C ** the symnetry of D.
C 88

DO 9 I-1.P
DO 9 J-l.P
I1 - (I-1)*N
12 - (J-I)*N

.9 13 - (J-1)*P + I
D (13) - C (13)
DO 8 K-1.N
D (13) - D (13) - Y (II+K) * Y (12+K)

8 CONT I NUE
14 - (I-1)*P + J
D (4) - D (M3)

9 CONTINUE
RETURN

C *
C * T
C 88 Compute C + Y * Y and store in D taking advantage of
C ** the symmetry of D.
C s

10 CONTINUE
DO 12 1=1.P
DO 12 J-I.P'-!!1= (1-1)*N

12 = (J-I)*N
13 - (J-1)*P +
D (13) - C (13)
DO 11 K-1.N
D (13) - D (13) + Y (11+K) * Y (12+K)

11 COWI NTUE
14 - (I-1)*P + J
D (14) - D (13)

12 CONT INUE
RE TURN
END

a- 
rUa-i*' - -
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APPENDIX B

CONTRACTION MAPPING RESULTS

Many smaller results were used in proving the existence of a region where coupled discrete-

time Riccati equations constitute a contraction mapping. This appendix is a collection of all the

minor results needed for the derivation. In the beginning of this appendix are five lemmas. Each

subsequent lemma builds upon the results of previous lemmas. Next. Theorem 3.2. which was

stated in Subsection 3.4.2. is proved. Then. Facts 3.2 and 3.3 (also found in Subsection 3.4.2) are

proved. The end of the appendix contains a summary page which serves as a quick reference to key

results. For ease of notation the 2-subscript on the Euclidean norm. I - , will be omitted in all the

lemmas.
P."

Lemma 1: Given R, = I. e>O. i=1.2 then I (r,(X ))-I - (r(Y ))-1 < (e,)2 I B 12 I X - y I

where X and Y are any two positive-semidefinite symmetric matrices and ri(X) A Ri + B XB .

Proof : It is straightforward to calculate •

(r,(x ))-I - (r,( ))-I = (R, + BrXBI) - 1 - (R, + BryB,) - 1

= (I+ R-IBrXB1 )-IR,- 1 - R-I (I+ B -BR1 )-1

= (I + R,-BXB)- 1  R,- 1 - (I + R 1BrXB,)R,- (I + BryaBIR -1 H
r 1

= (I + R,- 1 BrXB,)-' R - ' (I + BYB R , 1 ) - (I + R,-1BXB1)R, - I (I + BYBR,- 1 )-

= (I + R,-IBrXB,)- 1 IR,-IB7, YBR,- I - R,-IBNXBR, -  (I + BT-BR, - ' )-1

= (I + R,-1BTXB,)-1 R,-'BT Y - XI B,R, - (I + Bl-B,R,-1 )- H (B-1.1)

At this juncture. let R,= -I which implies that (R,) -  = . Then. from (B-I.) it follows
4E,

that

,--
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S(r(x ))-1 _ (r1(Y ))-1 = I (I + EiBr XBi) - 1 e1B [ Y - XI B16. (I + BFYBeje) - 1 I

=-(f,) 2 (I + eBrXB) [Y - XI B, (I + eBrYB,)-l I

< (E) 2 (I + eBrXB,)-I I B, 12 IY - XI (I + iBrYB)- I I (B-1.2)

Since. I Q+ e,B rXB) - + I -1 and both I and eB TXBI are positive-semidefiniteo.20 + ejB rjxB )

matrices, then o(I + eBrXB ) > (I) + c(eiBrXB i) t o(I) = 1 . Hence.

(I + eDBTXB )-1 I = 9 1.

' A similar argument concludes that

I (I + e,BrYBj) -
1  4 1 (B-I.4)

Finally. since I Y - XI = I X - YI . we have from (B-1.2) that

g'?.I FX ) - - ( ,( ) -1  ,2 B,2 .X -Y . (B-1.5)

0S

..

-S

"S

a
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L/mma 2: Given R, -1.i. ei>0. i=1.2 then
4Ei

I,(X)- ,(Y) lBil- + .IBI 2 X 1 (B-2.1)

where X and Y are any two positive-semidefinite symmetric matrices and

W j(X ) (r(X ))_1 B tX Furthermore, if X and Y are confined to a closed ball of radius 8i then

the following bound is obtained:

I*,(X)- '(Y)I 1 4ej IBI-1 1 +e1 IB1 I 2  IX -Y . (B-2.2)

Proof : For this and subsequent proofs we will utilize the matrix identity:

W X- Y Z = -. (W -Y)(X +Z) + (W +Y)(X -Z) (B-2.3) [

where W. X. Y. and Z are arbitrary but compatibly dimensioned matrices. Now. notice that

S(r,(x ))-I - < ( -=1
R B(RR+,BXB,)) + o(BfXB,) ETR1  

= B-,
U

Use (B-2.3) and the triangle inequality to compute

"- ~ ~ * ,(X X ) I -(

= + I(oix))-I -(r())-IIB, (X + Y) + I (r,(x ))-I +(r.(Y) B (X-Y )I12-:
'.~ .I< 2 I(,(X))-I-(r,(Y))-I-Ix +Y H + I (,(x))- 1 +(r,(y))- i - x -v I .

An additional application of the triangle inequality coupled with the result of Lemma 1 and (B-

2.4) yields:

11 *1(X )-I(Y)H

2< II (e,)2RB,R 2 . j X +1} 1.gX -111 + 2,llX -I'l

26

.~E 11 IB ,I1. 1 + --IIB, II2 -11X + y l" 1I .11X -Y I .. '

Hence. (13-2.1) is verified. Finally. if X and Y are contained in a ball of radius 8,. then I1 X II < 8,

and I" II < 8, Y Thus.

J. P'- .P .* .* . . . - . - - . .-,.,-*

-.- . .- - .. . - ,. . - . ,- .-. .-....- _. :-" ''.. .,. :. . -" ' C *, •: : : . -: . -:. -C - - ,- -
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I~'X- 11t(Y) I ej eI B,1 1 + - I 1Bi12 1IX + Y I I X - y I

2B 2

eilBil I1 + #IB,1 2 . SI8+8i j IIX -Y I

-eIBI 1i +ej8jlB1l 2 I
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LeMW 3 : Given R- II. ei>0. i=1,2 and any two positive-semidefinite symmetric matrices XIei im

and X 2 , then whenever ei < 1 holds simultaneously for i=1.2 it follows that
IB1l2 IXI{

I (-,(X ,.X2) - I 1 1 1

11- ele 2 I B1
2 IB212 IX 1 11X 21

I

1 - X(XI) X2(X 2) (B-31)

where

A(XI, X2) I - *(XI)B 2 *42 (X 2)BI . (B-3.2a)

=2(X I X 2) I- * 2 (X 2 )B *,'(X)B 2 . and (B-3.2b)

X(X) A SIB, 12 ix I. (B-3.3)

Furthermore. if X, is confined to a closed ball of radius 8,. i=1.2. then whenever

e; < 1 the following bound is obtained:
,2i 6,I Bi 12

IP [-(XI- X 2 )J 1 1 4 2 (B-3.4)

Proof : For this proof, we use (B-2.4) of Lemma 2 and the definition of *I'(X) to conclude that

I,(X) I < I B I X I. (B-3.5)

Define

f11 (X 1. X,) A .(XI)B,-4,(X2)B I and (B-3.6a)

0-,(X1. X,) A qI(X,)BI *,(XI) B , (B-3.fb),"

Then, I -,(X 1 .X 2 ) j -I jI- f1(X.X 2 ) JI0. Note that if (fI,(Xj.X,)R < 1. then

o'(I - O,(X 1,. X2)) > (l) - (fn1 (X 1. X2)) . Suppose that II ((X 1 . X 2 ) I < I . Hence.

II X)(XI. )  II = N I - f2,(X 1.X 2 ) 11

1
o~~r( I - fl1(X I. X 2) )".

" ~ ** .* 4 . ' V * '.. *' .. .4"" *,*: , ' ' ." - ,°. • 4- - , 4
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1 T M W (1i(X PX2  
( 3.7)

Next, for both i-1 and i-2:1-'i(lXT

IR Ifli(Xl.X2)1 14 lBIIB 2 1l' 1*(X 1. 1* 2(X 2)1

IS elOE2 1BI1 2 -IB 21 'I X 1 I 'IX 2 1 (B-3.8)

Define~ C IIBiI12I . I -I .i-1.2. So. whenever e, < Kj holds simultaneously for all i E 11. 2

I.then it follows thati nI (XI. X 2)1I < 1 . Consequently. for all ej E [O.?i) . i-1.2

I (X1.x 1 X2 1
1 - I !i(X 1. Xz) I

41

I - ee 1 B1I2 1B2I2 IX 1 II1X 2 IS~In view of (B-3.3).

1 - A 1(X 0)X2(X 2) I- ele, IB, 1
2 IB, 2 .1 X, 1 .1X, I(B9

* Therefore. (B-3.1) is proved. Finally. take ij=_____. Then. 1 (X 1) 1\1(X 2) <1 T~ Thus,

I(E~X1 .X/2- 8i 1 i 22

1 (,(XIX2)) 1 2~
2

5. 0

p..P
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eii/,emmna 4 : Given R, = -- lI E1 >0. i=1,2 and any four positive-semidefinite symmetric matrices

_ A 1 hls
XI• X 2 . YI.and Y 2 , such thatIXj<I i andIYI (8j. then if 0<e <E . 1 holds

8i 1 B, 12

simultaneously for all i E 1 1.2}, it follows that:

I (X - )1 0 -2 1(B 4 1I V~~2 I 0 +(YlY2)iVI 0+ 2
4 1Xl-Y 1 1 + .I1X2-Y21 '

81 (- VI V2 )2  82 (1- VI V2 ) 2  2

where P, ej 8i 1 B i 12 < I

Proof : Using notation of Lemma 3. (B-3.6a-b)•

-. ,(X 1. X 2 ) = I- n i(X 1 . X 2) •'

Then via a development that is similar to Lemma 1. (B-1.). we obtain

'( X 2 ) - j_-(y,.y 2 )- 1 = - . X 2 )j- fl1 (X 1 .X 2 ) - fl,(y.Y 2 ) j 1-,(YI. Y 2 )) 1

Now. for i=l .

f1I(X 1 , X 2 ) - 0l( 1, Y,) - 'I(XI)B 2'4 2(X 2)BI - *I(YI)B 1*2(y2)BI

2 ('1 1 (X 1) - *I"(Y 1)) B 2 (*/ 2(X 2 ) + I' 2(Y 2 )) BI +

Likewise.

I (* 1 (X 2 ) - *':(Y2)) B2 (* 2 (X 2 ) + XI'(YI)) B2

f0 2 (X . X 2 ) - -(Y 1 , 1'2) = - (*' 2 (X 2 )+ '2(Y2))BI(I(X 1 )_+* 1 (y1 ))B 2 +.4'

Remark :' 1 () is always a function of the first variable and '2() is always a function of the second

variable.

Making use of the triangle inequality, it is determined that

1 li iI.IBIIt'(X)-'Is'(Y)I'III''(X,)+'I'(Y)Ii + [

,..1 ** I4~ 44 1)** - 1) +*

[ n ( x l , X ' ) - f l ' Y 2 ) 11 -1 - T 1 1 B , 1 1 I ( x ) + . * ( ) -) I j 2 ( ) _ ( o ) I•
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Furthermore.

I | *]r(Xi) +1 -I#i(Yi)i (I l <, t F, I i "i+ j I 1 4ll 2 il~i ' " (B-4.2) "

Also.

I~j(j)-j(Y)I eIjI-1+LI B,121 x, +Yj y111x, -Y

I I

- s IBj I + ' J Ixj-'YI (B-4.3)

Therefore. putting all these facts together yields the following bound:

I 82 (1+v'l)lX 1 -Y 1 l + 1
I'i(XI.X 2 ) - 0i(YI.Y 2 )I E IOe2 1BI12 " 1B 2 12 " 81(1 + 2)1 X 2 -Y 21

_ I V2 (1 +,)IB,1 2 nX1 -yll +(14)

2  (I + V2) I B212 I X 2 - "2 I

Note • The derivation of this upper bound for I li(X I , X 2 ) - l(Y 1 , Y 2 ) I does not impose any

restrictions on the magnitude of el or 2 ! However, in order to bound

II i(xI. X 2 ) - 1 - (E(Y 1 .r2)I - 1  we must now invoke the definition of

- I Hence, for all 0 <i < ,the hypothesis of Lemma 3 is satisfied and we

S8iB.12

conclude that

" I r
"'. 2 )J1'- x(X 1 )x\ 2(X 2)

1I

S1- E 1E2 1B 1 12 8 l2 1B2 l X 2
1

"%
"'p.

.1

V.,- , .' - . . ." "', -'-" ."'"""" . ,:'.:": '" ' '.:'.-''''':.: -. ,v -"...,," ,,¢ , .,- :x":" ' '- .~
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1 - (B-4.5)

Clearly.

II~ ~ ~~~~( P~(i 2 J ~~ 1 Y2)j I

* 1 i(X 1. X2)j [: :i(Y 1 . Y 2)j II i (X1 .X 2) - fl(Y 1. Y2) I

< "if(XI-X 2) - fli(Y1 .Y 2)1

el1/2 (1 + PI B, 2  
'E I0+&,)IB1

- .Ix 1 -y 1 I +

VI Y'2 (+ VI) I 81+ P 2 (1 V 2)

1(1 -VI P25 82 1 - PI +2 7 ( 2 .1X 2 -Y 2 I

0

":K
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Lmma 5: Given R, = II. ej>0. i=1.2 and any two positive-semidefinite symmetric matrices X1 I

and X 2 . with I X, 1 8i . then whenever 0 < -C 8 A 1 holds for all i E .21 it81,1,I2 "

follows that:

IB 1FI(X. X 2) I" V(0 +V2), and
&I -u2 (B-5.1)

I B 2 F 2(X 1 , X 2 ) I" f 2 0 + yd
1 - &i~ u'2

whereA I A I and Yj ej 8j I Bi 2 < I

Proof : By definition:

BIFI(XI.X2) -BI -I(XX2) *I(XI) I-B2*2(X2) A and

B2F2 (Xl .X 2 ) = 22 I(XI. X2) *(X2) I-B11 (X1)

Thus,

BF-(X X 2 ) 1I (X) i ii X2)- B 2 * 2 (X 2 ) I

IB 2F 2(X 1 , X 2) I < IB 2 1 -1 1 2(XI. X2) 1'I'2(X 2) 'iI-BI*I(XI) I

where f IA I.

Since,J I*(X) 1< eIBiI.IX I e Ei lBil.

I BIF1 (X 1 . X 2 ) 4 < e 8,1 B, 12 - I(X IX 2 ) II I - B 2 * 2(X 2 ) I

= it I.l(X. 2 ), III-B 2* 2(X 2)-

< V2 I I - B 2* 2(X 2 )I

4 -1 +I1 B21'2 -I(X2) 1 K 1

"' <~ 1-- / 2  Y" V1-ut/ .

.1%

U
. o * -
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Similarly.

B 2F<(X 1 . X 2 )I < e 2 82 1B 2 a.1 j 2 (X 1 . X 2 ij I1I-BXU

( 1-1
f P 2 1 Iz 1 2(X1. X 2)J I1 -11 - BI1'1(X I) I

11I - B l*' (X ) I ;.
PV21- v 1 v2 -

p!

I+BI*(Xi f PV2 (1 + VI)
VIP2 .V 1- 2, •

0%

II
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Next, the proof of Theorem 3.2 is given. The significance of this result is that it defines

Lipschitz constants for the feedback expressions. The proof is streamlined by utilizing the results

of the previous lemmas.

Theorem 3.2 : Lipschitz Constants for the Feedbacks

Given (X, Y). (Z. W) E A. then

IB 1 (F 1 (ZW)-FI(X.Y))1 2 < ol 1 lX-Z 12 + 2 1Y -W 12

IB 2 (F 2 (Z.W)-F 2 (X.Y))12 a 2 1 IX -Z 12 + a 2 2 IY -W 12

4- r
.'"whr 11 - t 2 "at ,and 22

Proof : Consider the first inequality dropping all 2-subscripts. By definition:

SB ( FI(Z, W)-FI(X.Y) )I

UB . 1 1 . W ) I I- B2 2 ( W - -,Ex ) - , , x- , , - I I ._
(~ ~ ~ ~~~1 eI 1I I' ~~~) 1 izB 2 *2 w) - j=l(X.Y)j11lj(X)I-B 2I 2(Y-)j

The last term needs further investigation. Using the matrix identity (B-2.3). we can write:
S'

II( 1 Z. W) 1'*l(Z(1J- B'4 2(W) I - 1,EI(X -Y)I 1-1*l(X)(IB 2 4"-(y)

I s.,(Z, W) -l( (Z -=(X. Y) I ) (xj2 B2I-- 2(y + *(W)) II
2

I=I Z W))I *1 (Z ) + 1= 1(X, ' ,X)I B'* -4'(W)J I
+ 2

Note that from (B-3.5) and the fact that Y . W E B12 by hypothesis ,

-+

and similarly

4-?

I I-8 2 *I,(W I <, l+ W:
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Therefore. 
r

iIZfr(Z. W)j1'*Ir(Z)II1- B2 12(W)jI - (E1(X. Y)j 1 '*1 (X)(I-BII2(Y)j I

(I + F2-) - 11jE,(Z. W) 1'iui(z ) - j= 1(X. Y))I- *i(X) II+
B21 .~ -1 I 2)-*2 )I
2 ~ l . W)j'1'1 (Z) + 1= 1(X. Y)J~ 1 X 2 Y

1 + 92-) I IZ'(Z. W)I'1-*(Z) - gg( -Y 1 ,X +

< 82 (B-T.3.2.1)

2(1 W4'(Z )I + I I*(X)II1I11r 2(Y) - 2wI

where (B-4.5) has been used. Summarizing the results thus far:

I B, F1 (Z. W) - FI(X. Y) )I

4 1( +P)FB 1) IBI t=I(Z. W) I *'1(Z) - I ( 1 x. Y) *'1'x) I

2 ( I11F,82) * Ii '(Z I + I W (X )I I I 2 (Y ) - 4, W

4 ~ 1 + F2) I B1  I (=i(Z.W)J I *(Z) - 1=1(x. Y)j'I *(x) I

~jIB2  1 * 2 (Y) - 112(W) I

Now, an additional use of the matrix identity (B-2.3) on the first term of equation (B-T.3.2.1)

yields:

2 1=I kiz. W)J I 1=1(X. Y)' P1 V(7) + *1 (X)J +-

= 1(Z W)) + I=,(X. I-) I ''()-11 1 x)I

~ E11 H ~ll j (Z' W ) - ='(X .1") I~ I+ '(Z) - l(X) I



%- . --- WW -L

Hence,

I BI (FI(Z. W)- FI(X.Y) (I

•W WI (Z ) -I(X )I + F.IBI2 (Y ) - 2(W )I

- F

1- ( 1-F, 2+

F2 i) ( + F,1 + F

=x + Z I + - +
(+ 'V) F( I + F"2) Iu22 IzI W )F( 1 +r2 I Y)

W2)I P- W2

--6 FW 2  ITI -92
W1 F2 +/ F1 12 +W2

S- IY-WI

*- anAX - Z I + 1 2 1Y -WI.

A completely analogous argument can be developed for the second inequality which results in the

appropriate definitions for * 21 and C22 .

0

o'I.

.U.
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Now. the proofs of Facts 3.2 and 3.3 are stated.
m

Fact 3.2 : Given any XX E E and R ! I. F->O, then whenever e, 1 holds for
F 8i I Bi 122

alli E 11.2). Ii (X)- (Y) 2 < 1 IX -Y 12 where a' eA 8i1B i I? < 1(1 -

Proof : Under the given assumptions. it can be shown that:

1 Oi(x ) -Oi(Y ) 12,

,1111+eiX B1Bj I X YJ 1I+ eIBiBT YJ 112

-X II E,,X BrI II, II I+ jB Y1 2 X -Y 12 (B-F.3.2.1)

Since a' < 1 for all i E { 1.2 ,

II (+Ex BBJr 2

o- I e, X B.B )-

< '

1 - (e i 8, B ,BT, )'r

wh (B-F.3.2.2)

where U( 1 ) • 2 is the largest singular value of ( ). Similarly.

II B IJ (B-F.3.2.3)

Hence. in view of (B-F.3.2.2)-(B-F.3.2.3). (B-F.3.2.1) becomes

(D,(X) -0,(Y0 ' 1 !X- Y 11
(I-v) 2

- - % . - ~.%.[ ]L-'. .'.
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Faat 3.3: Given any (X.Y) E AAB; XB and R i I. ej>O, then whenever

P 0 < i (')A 1 < holds for all i E {1.21. it follows that

P 1(X.Y) I IAI(X.Y) 2  - 1 W2

P2(X.Y) = IA 2 (XY)I 2 4 f W = 2 W 1
A --.i A

where v .. i"i I Bi 2 and I A 12.

"" Proof : By definition.

IA(X.Y)1 2 = IA -B 2F 2(XY) 2 t IA 12 + IB 2F 2 (X•Y)1 2

IA,(X.Y)I, = IA -BiF(X.Y)12 ( IA 12 + IBIF(X.Y) 2

'V Lemma 5 of the Appendix states that

A 1 and IB 2F 2(X.Y)I 2 < 2 0 + ' )

where I A 1,. Hence.

IAI(X.y)Y12 <4 + 6 F-(2 + )

1 - -"

UW (I i(+ij) F. 1( W2~i) + W2 + W2j

I~ F2

*Defining K1  F1 thenlIA I(X -Y)I 12 R Similarly.

",... Since0 < ii, < 1 .then inL { j = 1land occurs aUtj l= i= 0  Thus. I 1, . 2 
> 1.

V L;2

I I ' : + ::J
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Some Important Facts Which Summarize the Lenmas

In all cases. i E ( 1.2.

1) II r,(x) II C< EforallX and alle, > 0. (B-2.4)

2) II r,(x)1 -(T(J I ( (6,)2 1 B] 2 I (LEMMAI)

for all X and Y and all ,, > 0.

3) 1 *,(X)I I ,B, I I X I for all X and all , > 0. (B-3.5)

4) I 'i(X) - j''(i ) IIiBI + -IBI 2 . IX +, jI- Ix - Y (LEMMA2)

for all X .Y and all, > 0. Moreover. ifX .Y E Bj then

I*i(X) - '(Y )I e, H1 B1 -jI+ e,8, IBI2 IAx Yi

= 1iIB:1' 1 + v ) - IX - y .

5) 1 I 1 (B-4.5)

- IiI -< _X,(X 0x2(x,) 1 -V, V,

whenever E, < where X, E B
S If B, 112

Ui

aD

U-2.
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APPENDIX C

L-A-S CONTRACTION MAPPING PROGRAM RUN

This appendix contains an L-A-S program to check for a contraction mapping and a sample

*run of the program. A summary and discussion of the data generated here may be found in

q subsection 3.4.3.

> rpf .contra

> pro
1 Linear Quadratic Nash Game
2 (rdf)-a.b1.b2,c1,c2
3 a.b I.b2,c l.c2(out~e)=
4 a.bI ,b2.cl .c2(game)=
5 (rdf)-sl.rl~s2,r2
6 rl.r2.sl.s2(out)=
7 cI(t).si(*).ci()=ql
8 c2(t).s2(*).c2(*)=q2
9 ql.rl.q2.r2(lq)=

10 (rdf )-zl,z2
I1I ql.q2(mcp)=kl.k23 12
13 l(dsc)-one
14 "Enter the total number of stages in this game."
15 (inp)=ii
16 :Main Loop
17 (stop)-
IS 18 kI~2ou~
19 k l.k2(lqng)=-k In.k2n
20 1klIn.k2 n(out~e)=
21 -Contraction Mapping Constant
22 1, .z I(-)=zz 1
23 k2.z2(-)-zz2
24 klIn.k I(-)=tt I
25 k.4n~k2(-)=tt2
26 zzl(nrm2)=xzl
27 zz2(nrm2)=xz2
28 ttl(nrm2)=xtl
29 tt2(nrm2)=xt2
30 xtl.xt2(-)=xt

*131 xz1.xz2(+)=xz
32 xz(inv)=xzi
33 xt.xzi(*)=aif
34 xzl.xz2.alf(out.e)=
35 k l.k2(mcp)=zlI.z2
36 klIn.k2n(mcp)=klI.k2

38 ii(if)=a
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> con i

>: Linear Quadratic Nash Game

> (rdf)-a.bl.b2.cl.c2

Enter name of the Data File (DF) for matrix a > contrI
Opening file named: contrl.DF
Reading array named: a
Reading array named: bl
Reading array named " b2
Reading array named • cl
Reading array named • c2

>a.bl.b2.cl.c2(oute)=

a
4.75537e-01 4.58 790e-0 2 -1.13 295e-04
4.58790e-02 3.44463e-01 -7.17458e-05

-1.13295e-04 -7.1 7 458e-0 5  2.50000e-01

bI

9.87000e+02
1.23000e+00

-1.0O00e-03

b2
1.37000e+O0

-1 .O000Oe-03
1.000OOe-05

ci
1.O0000e+O0 O.O0000e+O0 O.O0000e+O0
0.00000e+00 1.O0000e+O0 O.O0000e+O0
O.O0000e+O0 O.O0000e+O0 1.O0000eO0

c2
1.O0000e+00 0.0000e+00 O.O0000e+O0
0.0000e+00 1.O0000e+O0 O.O0000e+O0
O.O0000e+O0 O.O0000e+O0 1.O0000e+O0

> a.bl .b2.c 1.c2(game)=

>(rdf)=s1.rl.s2.r2

Enter name of the Data File (DF) for matrix sl >contr2
Opening file named : contr2.DF
Reading array named • si
Reading array named " rl
Reading array named s2
Reading array named: r2

> r1.r2,sl .s2(out)=
U

........*-*..*".*%*** . -~.. * * .- u
* *.* *~ ,
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rl
11.000

r2
11.000

sl
1.000 0. 0.
0. 1.000 0.
0. 0. 1.000

s2
"4 1.000 0. 0.

0. 1.000 0.
0. 0. 1.000

. , > Cl(t).sl(*).c 1(*)-q )

'-" #1.sl(*).cl(*)-ql
#2,cl(*)-ql

> c2(t).s2(*),c2(*)q2
#1 ,s2(*),c2(*)-q2
#2.c2(*)-q2

>ql.rl.q2.r2(lq)=

>(rdf)-zl.z2

Enter name of the Data File (DF) for matrix z1 >contr3
* Opening file named : contr3.DF

Reading array named zi
Reading array named z2

>ql.q2(mcp)=kl.k2

.- >:

> l(dsc)-one

>Enter the total number of stages in this game."

Enter the total number of stages in this game.

>(inp)-ii

• Matrix ii *
Enter the dimensions of this matrix. > 1.1

Enter the scalar ii > 15

>: Main Loop

> (stop)-

. • . -. . .- . •h•- -- . * .. V -..-. :.. - .. -- * ."-v-x".-"... . ': .-- %,.-- .-.-. " .'.. "> ;''- - . ." %:." '".,; %,%* - ":
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> con

k1
1.00000e+00 0.00000e+00 0.00000e00
O.O0000e+O0 1.OOOOOe+OO O.O0000e+O0
o.oooooe+00 0.00000e+o 1.oo0e+00

k2
1.00000e+00 O.0000.00 0.00000e+00
o.oooooe+00 1.oooooe+oo o.oooooe+00
0.00000e+00 0.00000e+OO 1.00000e+0O

kln
1.00205e+00 1.5 5 971e-02 -3 .14 4 54e-05
1.55971e-02 1.11861e+00 - 4 .25852e-05

-3.14454e-05 - 4 .2 5 852e-05 1.06 250e+00

k2n
1.00205e+00 1.5 5 969e-02 - 3 .14449e-05
1.55969e-02 1.11862e+00 -4 .2 5 8 54e-05

-3.14449e-05 - 4 .2 5 854e-05 1.06 2 50e+00

xzl
1.00000e+00

xz2
1.00000e+00

alf
1.20666e-01

kl
1.00205e+00 1.5 5 97 1e-02 -3 .1 4 454e-05
1.55971e-02 1.11861e+00 -4 .2 5 8 52e-05 Al

-3.14454e-05 -4 .2 5 8 5 2 e-05 1.0 6 2 50e+00

k2
1.00205e+00 1.5 5 969e-02 -3 . 1 4449e-05
1.5 5969e-02 1.11862e+00 -4 .2 5 854e-05

-3.14449e-05 -4 .2 5 854e-05 1.06250e+00

kln
1.0 0230e+00 1.7 4 42 7 e-02 -3 .4 0 6 77e-05 

'

1.74427e-02 1.13265e+00 -5 .02427e-05
-3.40677e-05 -5.0 2 4 27 e-05 1.06641e+00

k2xt
1.00229e+00 1. 7 4 4 2 4e-02 -3 .4 06 71e-05

1.74424e-02 1.13265e+00 -5.0 2 429e-05
-3.40671e-05 -5.0 2 429e-05 1.066 41e+00.

.U

-i4.l
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xzl
1.20666e-01

1.20666e-01

alf
1.18329e-01

ki
1.00230e+00 1.74427e-02 -3.40677e-05
1.74427e-02 1.13265e+00 -5.02427e-05

-3.40677e-05 -5.02427e-05 1.06641e+00

k2
1.00229e+oo 1.74424e-02 -3.40671e-05
1.74424e-02 1.13265e+00 -5.02429e-05

-3.40671e-05 -5.02429e-05 1.06641e+00

kln
1.00232e+oo 1.76606e-02 -3.43086e-05
1.76606e-02 1.13431e+O0 -5.13070e-05

-3.43086e-05 -5.13070e-05 1.06665e+00

k2n
1.00232e+00 1. 76603e-02 -3.43080e-05
1.76603e-02 1.13431e+O0 -5.13073e-05

-3.43080e-05 -5.13073e-05 1.06665e+00

I xzl
1.42782e-02

qxz2
1.42 782e-02

alf
1.18053e-01

kl
1.00232e+00 1.76606e-02 -3.43086e-05
1.76606e-02 1.13431e+00 -5.13070e-05

-3.43086e-05 -5.13070e-05 1.06665e+00

k2
1.00232e+00 1. 76603e-02 -3.43080e-05
1.76603e-02 1.13431e+00 -5.13073e-05

-3.43080e-05 -5.13073e-05 1.06665e+00

kin
I.(O233e+0( 1.76863e-02 -3.43328e-05
1.76863e-02 1.13450e+00 -5.14426e-05

-3.43328e-05 -5.14426e-05 1.06667e+00

o 1 t7
,, - - ... ", " ' , .. - -" , :,, ","",. ": .v " -," "- - "-..,,r -V -. :-., -. <:;Ik ;', ,", ";, -
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k2n
1.00233e+00 1.76860e-02 -3.43321e-05
1.76860e-02 1.13450e+00 -5.14429e-05

-3.43321e-05 -5.14429e-05 1.06667e+00

xzl

1.68558e-03

1.68558e-03

alf
1. 18020e-01

kl
1.00233e+00 1.76863e-02 -3.43328e-05
1.76863e-02 1.13450e+00 -5.14426e-05

-3.43328e-05 -5.14426e-05 1.06667e+00

k2
1.00233e+00 1.76860e-02 -3.43321e-05
1.76860e-02 1.13450e+00 -5.14429e-05

-3.43321e-05 -5.14429e-05 1.06667e+00

kln
1.00233e+00 1.76893e-02 -3.43353e-05 .
1.76893e-02 1.13453e+O0 -5.14592e-05

-3.43353e-05 -5.14592e-05 1.06667e+00
4.

k2n
1.00233e+00 1.76890e-02 -3.43347e-05
1.76890e-02 1.13453e+O0 -5.14595e-05

-3.43347e-05 -5.14595e-05 1.06667e+00

xzl
1.98932e-04

xz2
1.98933e-04

alf
1.18016e-01

kl
1.00233e+00 1.76893e-02 -3.43353e-05
1. 76893e-02 1.13453e+00 -5.14592e-05
-3.43353e-05 -5.14592e-05 1.06667e+00

k2 U
1.00233e+00 1.76890e-02 -3.43347e-05
1.76890e-02 1.13453e+00 -5.14595e-05

-3.43347e-05 -5.14595e-05 1.06667e+00

U
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kln
1.00233e+00 1.76897e-02 -3.43356e-05
1.76897e-02 1.13453e+00 -5.14613e-05

-3.43356e-05 -5.14613e-05 1.06667e+00

k2n
1.00233e+00 1.76894e-02 -3.43350e-05
1.76894e-02 1.13453e+00 -5.14615e-05

-3.43350e-05 -5.14615e-05 1.06667e+00

xzl

2.34772e-05 4

2.34773e-05

"". all ,

1.18016e-01

k1
1.00233e+00 1.76897e-02 -3.43356e-05
1.76897e-02 1.13453e+O0 -5.14613e-05

-3.43356e-05 -5.14613e-05 1.06667e+00

k2
1.00233e+00 1.76894e-02 -3.43350e-05
1.76894e-02 1.13453e+00 -5.14615e-05

-3.43350e-05 -5.14615e-05 1.06667e+00

kin
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00"-

k2n
1.00233e+00 1.76894e-02 -3.43350e--05
1.76894e-02 I.13453e+00 -5.14618e-05

-3.43350e-05 -5.14618e-05 1.06667e+O0

xzl
2.77068e-06

xz2
2.77069e-06

alf
1.18016e-01

ki
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05
-3.43357e-05 -5.14615e-05 1.06667e+O0

U,

-V
~V '............................. .. *.-
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k2
1.00233e+00 1.76894e-02 -3.43350e-05
1.76894e-02 1.13453e+00 -5.14618e-05 U

-3.43350e-05 -5.14618e-05 1.06667e+00

kln
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00

k2n
1.00233e+00 1.76895e-02 -3.43351e-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.43351e-05 -5.14618e-05 1.06667e+00.

xzl
3.26983e-07

xz2
3.26986e-07

alf
1.18016e-O1

kl
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 "1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00

k2
1.00233e+00 1.76895e-02 -3.4335le-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.4335le-05 -5.14618e-05 1.06667e+00 ,

kln
1.00233e+00 1.76897e-02 -3.43357e-05-

1.76897e-02 1.13453e+00 -5.14615e-05
-3.43357e-05 -5.14615e-05 1.06667e+00

k2n
1.00233e+00 1.76895e-02 -3.4335le-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.4335le-05 -5.14618e-05 1.06667e+00

xz1

3.85891e-08

xz2
3.85894e-08

alf
1.18016e-01

;
- V '~V

V V ~ .
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ki
1.00233e+00 1.76897e-02 -3.43357e-051.76897e-02 1.13453e+00 -5.14615e-05
-3.43357e-05 -5.14615e-05 1.06667e+00

k2
1.00233e+00 1.76895e-02 -3.43351e-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.43351e-05 -5.14618e-05 1.06667e+00

kln
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00

k2n
1.00233e+00 1.76895e-02 -3.43351e-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.43351e-05 -5.14618e-05 1.06667e+00 i

xzl
4.55412e-09

xz2
4.55416e-09 .

1.18016e-01

kl
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05

IP -3.43357e-05 -5.14615e-05 1.06667e+00
'..

k2 I

1.00233e+00 1.76895e-02 -3.43351e-05
" 1.76895e-02 1.13453e+00 -5.14618e-05

-3.4335 le-05 -5.14618e-05 1.06667e+00

kln
1.00233e+00 1.76897e-02 -3.43357e-05
I.76897e-02 1.13453e+00 -5.14615e-05-3.43357e-05 -5.14615e-05 1.06667e+00

k2n
", 1.00233e+00 1.76895e-02 -3.43351e-05

1. 76895e-02 1. 13453e+00 -5.14618e-05
-3 .4335le-05 -5.14618e-05 1.06667e+00

xzl
5.37457e-I0

xz2



124

5.3 7463e-10

aif
1.18016e-01

kl
1.00233e+00 1.76897e-02 -3.43357e-05
1.76897e-02 1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00

k2
1.00233e+O00 1.76895e-02 -3.4335le-05
1.76895e-02 1.13453e+00 -5.14618e-05

-3.4335le-05 -5.14618e-05 1.06667e+00

kin
1.00233e+00O 1.76897e-02 -3.43357e-05

*1.76897e-02 1.13453e+00O -5.14615e-05
-3.43357e-05 -5.14615~e-05 1.06667e+00

k2n
4.1.00233e+00 1.76895e-02 -3.43351e-05

1.76895e-02 1.13453e+00 -5.14618e-05
-3.4335le-05 -5.14618e-05 1.06667e+00

xzl
6.342 84e- II

xz2
6.3429le-11

aif
* 1.18016e-01

kl
1 .00233e+00 1 .76897e-02 -3.4335 7e-05
1.76897e-02 1.13453e+00 -5.14615e-05

-3.43357e-05 -5.14615e-05 1.06667e+00

k2
1.00233e+00 1.76895e-02 -3.43351e-O5

*1.76895e-02 1.13453e+00 -5.14618e-05
-3.43351e-O5 -5.14618e-05 1.06667e+00

kin
1.00233e+(X) 1.76897e-02 -3.43357e-05 -

1.76 8 97 e-02 1.13453e+00 -5.14615e-05
-3.43357e-05 -5.14615e-05 1.06667e+()

k2n
1 .00233e+0O 1. 76895e-02 -3.4335 ic-OS

*1. 76495e-02 1.1 3453e+OO) -5.14618Se-O5
-3.4335 ic-OS -5.14618~e-05 1.06667e+00

VU
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;~ZII xzl
7 .48554e-12

~ xz2
7 .4 8565e-12

alf
1.18014e-01

kl
1.00233e+00 1.76897e-02 -3 .43357e-05
1.7 6 897e-02 I.13453e+00 -5.14 6 15e-05

- 3 .4 3 35 7 e-05 - 5 .14615e-05 1.06667e+00

k2
1.00233e+00 1. 7 6895e-02 - 3 .4 335le-05
1.7 6895e-02 1.13453e+00 -5.14618e-05

-3 .43351e-05 -5.14618e-05 1.06667e+00".

kln
1.00233e+00 1.7 6897e-02 - 3 .43357e-05
1. 7 6 8 97 e-02 1.13453e+00 - 5 .14 615e-05

- 3 .4 3 3 5 7 e-05 -5.14615e-05 1.06 667e+00

k2n
1.002 3 3e+00 1.7 6895e-02 - 3 .4 3351e-05
1. 7 6 8 95e-02 1.13453e+00 -5.14618e-05

- 3 .43351e-05 - 5 .14 618e--05 1.06 6 6 7 e+00 ,

xzi
8. 8 3 4 04e-13

xz2
8. 8 3 4 04e- 13

: , a lf
.N' 1.18020e-01 

,

kl
1.00233e+00 1.7 6897e-02 - 3 .4 3 35 7 e-05
1.7 6 8 97 e-02 1.13453e+00 -5 .14615e-05

-3 .4 3 3 5 7 e-05 -5.14615e-05 1.06 6 6 7 e+00

k2
1.00233e+00 1.7 6 895e-02 -3 .4 33 51e-05
I. 7 68 95e-02 1.13453e+O0 -5 .14 6 18e-05

- 3 .4 3 3 5 1e-05 - 5 .14 618e-05 1.0666 7e+O0

kln
1.00 2 3 3 e+00 1.7 6 897e-02 - 3 .43357e-05
1.7 6 8 97 e-02 1.13453e+00 -5 .1 4 615e-05

- 3 .4 3 3 5 7e-05 -5.14615e-05 1.06667e+00""

- -~ U' - --- ~ .• -- , '- - ,'* - lK* * -I l I |



126

k2n
1.00233e+00 1.76895e-02 -3.43351e-O5
1.76895e-02 1.13453e+00 -5.14618e-05

-3.4335le-O5 -5.14618e-05 1.06667e+00

xzl
1 .04246e-1 3

xz2 I
1.04273e-13

aif
* 1. 180S0e-O1

> end
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